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Abstract

This paper develops an economic theory to explain the optimal choice of blockchain
transaction fee policies, contrasting quantity controls (as in Bitcoin) and price controls
(as in Ethereum). I model the blockchain as a decentralized platform where valida-
tors, possessing temporary monopoly power and facing uncertain operational costs,
choose transactions under varying user demand. The analysis finds that price con-
trols outperform quantity controls when demand volatility is significant, the correla-
tion between marginal costs and demand is low, and validators hold substantial bar-
gaining power—conditions aligning closely with Ethereum’s current structure following
its proof-of-stake transition. Conversely, quantity controls are optimal when marginal
costs positively correlate with demand and validators’ bargaining power is limited, con-
ditions characteristic of Bitcoin’s proof-of-work model. Using recent transaction data
from Ethereum’s fee policy (EIP-1559), I identify that Ethereum’s base fee adjusts
more rapidly than optimal. Additionally, I derive bounds for block size targets to mit-
igate maximal extractable value (MEV) exploitation. These insights offer guidance for
improving blockchain governance and optimizing fee policy design.
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1 Introduction

Transaction costs play an essential role in the evolving areas of blockchain technology and

decentralized finance. They manage the allocation of space on a blockchain—block space—

which is a limited resource due to the economic and scaling limits of blockchain systems

(Buterin, 2021; Budish, 2024). However, these transaction costs can induce illiquidity and

create trade execution risk. As cryptocurrencies integrate into mainstream financial systems,

exemplified by the approval of Bitcoin and Ethereum exchange-traded funds (ETFs) (SEC,

2024), inefficient fee policies can delay settlement of underlying crypto-assets and potentially

affect financial stability. This paper provides a theory of how and why fee policies differ across

blockchain platforms and what these fee policies should look like.

From a regulatory perspective, understanding the mechanisms behind how transaction

services are priced and prioritized is crucial for developing effective oversight policies for

blockchain platforms. Furthermore, from a blockchain design perspective, transaction costs

directly affect economic efficiency and ultimately impact user adoption.

The Bitcoin and Ethereum blockchains are two leading examples that reflect opposite

extremes in the choice of fee policies. For Bitcoin fees, a maximum quantity is set by the

protocol (maximum block size), and users and transaction service providers independently

choose fees. I call this the quantity-setting or quantity controls regime. On the other hand,

Ethereum sets a minimum price while the block size adjusts in response to demand. I call

this the price-setting or price controls regime. Most blockchains follow a variation of either

the Bitcoin or the Ethereum fee policies, and some set constant fees by default or subsidize

user fees until their network matures and faces congestion issues. In addition, there is an

active debate on the future of the Bitcoin blockchain. As the payoff for transaction service

providers programmatically decreases every four years, the role of fees becomes increasingly

important for Bitcoin.

In this paper, I model a blockchain—similar to that underlying Bitcoin or Ethereum—as a

distributed computing network where users submit transactions for inclusion by validators—
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the transaction service providers. Transactions, representing data that modify the network’s

state (such as account balance transfers), are submitted by users with a bid to a publicly

observable pool—known as the mempool—that indicates their willingness to pay for transac-

tion processing. Using their limited resources, validators select a subset of transactions from

the mempool to form a block. Each block, comprising an ordered sequence of transactions

and a reference to the previous block, can be appended to the blockchain in every period.

However, technological limitations impose a maximum block size, constraining block space

supply.

On the supply side of transaction processing services, validators (also known as miners

in proof-of-work systems) are responsible for processing transactions and adding them to

the blockchain. While there are multiple validators in the network, each validator enjoys

temporary monopoly power when they are selected to propose the next block due to the

consensus mechanism (e.g., proof of work or proof of stake).1 This grants them discretion

over which transactions to include and how to prioritize them. Therefore, in our model,

we focus on a representative validator with monopolistic characteristics during their turn to

validate a block.2

The validator faces fluctuations in marginal costs due to varying operational costs of

transaction processing on blockchains. In a proof-of-work protocol such as Bitcoin, miners

use computational resources to solve a mathematical puzzle, and their marginal cost varies

with the level of competition that they face before being selected to validate transactions.

While competition among validators affects the probability of winning the right to produce

a block (impacting expected benefits), we focus on the variability in validators’ operational

costs to capture the uncertainty in their marginal costs.3 In a proof-of-stake protocol such as

the updated Ethereum, marginal costs are essentially constant due to the reduced reliance
1See Saleh (2020) for an economic analysis of proof-of-stake.
2We interchangeably use the plural term ’validators’ for the group of validators as a whole and the singular

’validator’ when referring to the interim monopolist validator chosen to process transactions.
3In the case of monopolistic miners (such as a mining pool), Cong et al. (2021) show that the risk of

being selected as a validator can be diversified.
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on computational power.

On the demand side, atomistic users arrive at random and submit their transactions along

with their willingness to pay for these transactions to be included in the next block. Given

the paper’s focus on the aggregate properties of the block space market, we operate under

the assumption that users reveal their maximum willingness-to-pay (their true valuations)

for transaction inclusion. This can arise if waiting or transaction failure is costly and users

rationally set bids equal to their utility cost of not transacting.4 This process forms the

microfoundations of an aggregate user demand curve, with a demand shifter that captures

low and high-demand situations.

In the face of these uncertainties, the protocol must commit to either a base fee—an ex-

ante price control—or a block size limit—an ex-ante quantity control.5 This choice highlights

a disagreement between the blockchain designers’ objective and the profit-maximization

objective of the validator with significant interim monopoly power after they are chosen

to validate a block. Indeed, a protocol designer who prefers full capacity utilization or has

an exogenous technological block size target (that internalizes social benefits and costs) will

choose the quantity-setting regime as it guarantees the desired block size irrespective of

sources of uncertainty. On the other hand, a monopolist validator would choose either the

price-setting or the quantity-setting regimes, depending on the relative degree of uncertainty

in demand and marginal costs.

I model the resolution of the conflict between the blockchain designer’s and monopolistic

validator’s preferences through Nash bargaining over the protocol profits. I show that, in

this context, the choice of instruments is more nuanced than Weitzman’s (1974) “prices vs.

quantities” insight: namely, that price controls prove more effective when demand uncertainty

is high and quantity controls more effective when uncertainty in marginal costs is high.
4Dominant-strategy incentive compatibility for all the fee policies considered in this paper is substantiated

by the game-theoretic proofs provided by Roughgarden (2020, 2021).
5Since the fee policies are rule-based and encoded in the blockchain, the protocol must commit to a supply

schedule before any uncertainty realizations. We analyze the two extremes of price-setting and quantity-
setting supply schedules, motivated by the Bitcoin and Ethereum cases, and as a first step in the analysis of
blockchain fee policies.

4



In general, the key determinants of the advantage of price-setting in blockchains are the

validator’s bargaining power, the elasticity of demand, the validator’s uncertainty about

demand, and the covariance of demand and marginal costs.

First, demand uncertainty favors price controls when the validator has high bargaining

power, as block size adjustments provide the flexibility necessary to accommodate demand

fluctuations. Second, a positive correlation between marginal costs and demand disfavors

price controls. In this case, quantity adjustments would produce larger blocks when marginal

costs are high, thereby decreasing efficiency. Third, a higher price elasticity of demand—the

proportional change in block space demand in response to a proportional change in price

for the marginal user seeking to include her transaction in the next block—further amplifies

the relative advantage of price controls over quantity controls and makes the choice over

fee policies even more important. However, quantity controls become more effective if the

monopolist validator has low bargaining power. Last, without uncertainty, the blockchain

designer and validator remain indifferent between price and quantity controls.

This result helps us understand the differences in the policies determining fees and block

space in Bitcoin and Ethereum. For both blockchains, the price elasticity of demand is high,

and demand uncertainty is significant.

Ethereum can be viewed through the lens of our model as an instance where validators

have high bargaining power (or are considered influential by the protocol designers).6 In

addition, since its proof-of-stake upgrade, the marginal cost of a marginal block increase for

Ethereum validators is virtually constant. In this case, my result points to price-setting as the

most favorable policy for Ethereum. This helps explain the recent adoption of the Ethereum
6While the Ethereum Foundation (EF) maintains considerable authority over protocol upgrades, the

validators’ economic leverage in day-to-day block proposal can also be significant. In particular, validators
may capture substantial amounts of fees and Maximum Extractable Value (MEV), and hence, they can
indirectly influence or resist certain protocol-level fee adjustments if these undermine their profitability.
Nonetheless, the Ethereum governance process—rooted in Ethereum Improvement Protocols (EIPs) and
developer-led forks—often appears to grant the EF a strong position. Fracassi et al. (2024) find that 10
individuals are responsible for proposing 68% of all implemented Core EIPs, some of which are connected
to Consensys, a private company, and other EF affiliates that have advised private companies. Recent
comparisons of the Ethereum blockchain to its competitor Solana have also led to a new push to increase its
block size limit https://pumpthegas.org/.
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Improvement Proposal 1559’s (EIP-1559’s) price-setting policy for the Ethereum blockchain.

Furthermore, Ethereum’s fee policies are found to perform better after Ethereum’s proof-of-

stake upgrade, consistent with the correlation between validators’ marginal costs and demand

being lower than miners’ in a proof-of-work protocol.

For its part, Bitcoin is distinguished as the first blockchain with an anonymous founder,

and its core developers strongly emphasize decentralization and censorship resistance. Most

proposals to change Bitcoin’s fees and block size policies have failed. Bitcoin can, therefore,

be viewed through the lens of our model as an instance where validators (here miners) have

low bargaining power (or are not attributed enough importance by protocol designers). In

addition, under the proof-of-work protocol, the marginal cost of miners is largely positively

correlated with demand. Our result then states that, in this case, price-setting is less effective

than in the case of Ethereum.

Last, it is essential to consider that users (and validators) might value block space (and

marginal costs) in dollars or real terms rather than in the native currency of the blockchain.

To accommodate this, I expand the model to introduce uncertainty in the cryptocurrency

price in US dollars or real terms. Notably, price controls are restricted to be expressed in

units of the native currency. I show that volatility in the cryptocurrency price reduces the

advantage of price controls over quantity controls.

Building on these insights, I briefly discuss the implications of my results for fee policies

on Ethereum, the most widely utilized public blockchain, whose fee policy is a blueprint

for many blockchains that follow the price-setting regime. I show that the rate at which

Ethereum’s fee policies readjust prices should be tightly linked to the price elasticity of

demand to include a transaction in the next block. Using a random sample of Ethereum

transaction data, I apply my framework to evaluate recent changes to Ethereum’s fee policies.

I find that the rate at which Ethereum’s fees are changed is faster than optimal.

In addition, I characterize the optimal block size target (a quantity control) for a monop-

olistic validator and offer tight bounds on its size relative to the block size limit. There are
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widespread concerns regarding the potential for validators and other users to exploit their

power to capture what is colloquially referred to as “maximal extractable value" (MEV)

through the censoring, swapping, and front-running of mempool transactions (Daian et al.,

2020). I find that Ethereum’s current ratio of block size target to maximum block size leaves

too much room for a monopolist validator to include her value-extracting transactions.

Blockchain designers need simple and robust economic insights to design their fee policies.

With this need in mind, I conclude by suggesting open questions connected to this research.

1.1 Literature Review

The literature has generally explained blockchain fees arising because of competition for

block space among heterogeneous, impatient users (Huberman et al., 2021). Easley et al.

(2019) study the evolution of Bitcoin transaction fees, while Hinzen et al. (2022) highlight

Bitcoin’s limited adoption problem. Some studies highlight the strategic use of capacity on

the Bitcoin blockchain (Lehar and Parlour, 2020; Malik et al., 2022). Catalini and Gans

(2020) and Böhme et al. (2015) provide a simple primer on the economics of blockchains.

This paper contributes to this literature by explaining the emergence of the two families of

blockchain fee policies, those of Bitcoin and Ethereum.

Our modeling of demand uncertainty in blockchain usage and cryptocurrency investment

is consistent with prior research. Aiello et al. (2023) documents the interaction of cryptocur-

rency price fluctuations with household investment behavior. Kogan et al. (2024) observe

cryptocurrency usage and trades and identify momentum in cryptocurrency investments. In

addition, fluctuations in uncertainty in Bitcoin block-production costs have been widely doc-

umented. Rehman and Kang (2021) show a negative correlation between the Bitcoin hash

rate and energy commodity prices and Delgado-Mohatar et al. (2019) document increasing

and varying electricity production cost of Bitcoin over time. However, since the proof-of-

stake upgrade, the marginal production cost of Ethereum blocks is essentially fixed, and

participation as a validator is determined by stake. Jermann (2023) studies the steady-state
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dynamics of Ethereum stake. We use these facts to motivate our modeling approach based

on demand and supply uncertainties for blockchains.

This paper contributes to the literature on price versus quantity controls, a domain

pioneered by Weitzman (1974). The issue of choosing a supply function under uncertainty

has been explored in Klemperer and Meyer (1989). My approach aligns closely with that of

Reis (2006) and Flynn et al. (2023), who study the choice of a supply function from a firm’s

perspective and its macroeconomic implications. While my work draws inspiration from

Weitzman (1974), it diverges in that it contemplates the planner’s (blockchain designer’s)

problem with a variety of goals, including purely technical objectives like those seen in

practice, such as block size targets. The conclusions of this analysis are then applied to

the design of transaction fee mechanisms (TFMs). Specifically, Ndiaye (2023) provides a

summary of how the economic factors that affect the design of fee policies, as studied in this

paper, correlate with the technical features of blockchains.

The literature taking a mechanism design perspective to examine fee policies is growing.

Notably, Akbarpour and Li (2020) examine mechanisms immune to designer manipulations—

referred to as “credible mechanisms”—and demonstrate that the well-known second-price auc-

tion does not meet this credibility criterion. In the blockchain context, Roughgarden (2021)

applies this credibility condition to fee policies and establishes that EIP-1559, Ethereum’s

TFM, which essentially acts as a first-price auction with a dynamic reserve price, and its

variations are incentive-compatible for users and adhere to a form of myopic credibility

for validators. These findings are further consolidated by Chung and Shi (2023). These

papers provide game-theoretic foundations that guarantee that the ADT-TFMs (transac-

tion fee mechanisms that are adaptive to a deterministic target) that I study are incentive-

compatible. Ferreira et al. (2021) explore an alternative aspect of fee policies by investigating

posted price mechanisms. The approach that I take in this paper is complementary to this

strand of literature. Moreover, I study the dynamics of fee policies, offering insights into

their updating rules.
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This paper also advances the literature examining the block space market from a macroe-

conomic perspective. The concepts formalized in Section 3 of this paper build upon and ex-

tend Buterin’s (2018) reading of Weitzman (1974), with important differences characterizing

the blockchain context because the protocol designer is limited in her capacity to enforce

quantity or price controls. In other related work, Lavi et al. (2022) and Nisan (2023) inves-

tigate the monopolistic market for unlimited block space, in contrast to this paper, which

takes the block size limit as an exogenous technological constraint.

Last, this paper contributes to studies of the dynamics of the Ethereum fee policies re-

cently adopted in EIP-1559. Leonardos et al. (2021) studies the behavior of the dynamic

system resulting from the fee policies, and Leonardos et al. (2022) uncovers numerous em-

pirical properties for which this paper provides a theoretical explanation.

Outline: The paper is organized as follows: Section 2 gives an overview of the function-

ing of the Bitcoin and Ethereum protocols, makes the case that validators have had more

bargaining power in the history of Ethereum than in that of Bitcoin, and explains how

Ethereum fees are determined. Section 3 introduces the model and provides the main results

of my analysis and an extension to cryptocurrency price fluctuations. Section 4 examines

implications for Ethereum’s fee policies. Last, Section 5 concludes the paper.

2 Transaction Fees and Block Space Utilization in Bit-

coin and Ethereum Protocols

2.1 The Evolution Bitcoin and Ethereum Protocols and Fee Policies

A blockchain is a decentralized digital ledger that records transactions across a network of

computers, called validators, in an immutable chained list of blocks. Bitcoin, introduced by

Nakamoto (2008), was conceived as a peer-to-peer digital currency. In contrast, Ethereum,

proposed by Buterin et al. (2013), extends the basic blockchain concept to include more
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versatile functionalities such as self-executing agreements, known as “smart contracts”.

In Bitcoin and Ethereum, each block has a fixed capacity because of technological con-

straints such as bandwidth and storage and the negative externalities associated with large

blocks’ propagation times. These limitations ensure that running a node remains accessible

to a broad range of participants, thereby fostering decentralization. This limited capacity

necessitates transaction fees, which serve as a market mechanism to allocate this scarce

resource. Fees incentivize validators to prioritize and include transactions in a block.

Over the years, both Bitcoin and Ethereum have experienced changes in their block

capacity and fee structures to adapt to changing network demands. On the price side,

Bitcoin shifted from offering no-fee transactions to imposing transaction fees, as studied

by Easley et al. (2019). On the block capacity side, since its inception, Bitcoin has given

control of this capacity to the protocol developers. The original 1MB block size limit in

the Bitcoin blockchain ignited intense debates within the community over scalability versus

decentralization. On one side, proponents of a larger block size argued that increasing

capacity would enable more transactions per block, alleviating congestion and lowering fees.

On the other side, critics warned that larger blocks would raise the computational and

storage requirements for running a validator, compromising the network’s decentralization.

This ideological divide peaked in 2017, leading to a “hard fork” that birthed Bitcoin Cash, a

separate chain with an 8MB block size. Concurrently, Bitcoin adopted Segregated Witness

(SegWit), effectively changing the block size limit to a more complex “block weight” limit of

approximately 4 million units.

Ethereum, for its part, imposed transaction fees from the beginning. In Ethereum, “gas”

serves as the unit of resources, and the “gas limit” dictates the maximum network capacity

in a single block. Initially, Ethereum attempted a different paradigm and gave control over

capacity to validators. Each validator was allowed to change capacity up or down by 0.1% for

each new block. The underlying rationale was to transform the philosophical debate on block

size into an economic decision, assuming that validators, heavily invested in the network,
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would act individually in the long-term interest of the network. However, in practice, the

history of Ethereum block size changes in Table A1 in Appendix A illustrates that validators

have often abused their bargaining power and colluded to manipulate network capacity.

This behavior is exemplified by an April 21, 2021, announcement from Sparkpool, a major

validator based in China with 23.5% of the network’s computational power at that time:

@sparkpool_eth: "We are raising gas limit to 15 million"

@btcdentist: "did you get permission from the core devs?"

@sparkpool_eth: "What we need is advice from dev, not permission."

To curb such practices, Ethereum introduced EIP-1559, a fee mechanism designed to limit

validators’ discretionary power over network capacity and enhance user fee predictability.

Figure 1 illustrates the time series of the capacity utilization rates of the Bitcoin and

Ethereum blockchains. Considering blockchain upgrades over time and their variations, I

define the block size target as the size below which the reserve price for pending transactions

does not increase. The capacity utilization rate is, consequently, the daily average of the

fraction of the realized block size to the block size target.

For Bitcoin, the block size target was 1MB pre-SegWit and is 4 million weights post-

upgrade. The top panel indicates an initial surge in Bitcoin’s utilization rate during its

nascent phase. However, as its use has become more widespread, the network has not

continuously operated at full capacity. This fact is corroborated by Lehar and Parlour (2020),

who attribute the prevalence of less-than-full blocks to strategic capacity management by

monopolistic validators.

Before the London hard fork, Ethereum’s block size target varied based on validator

votes, ranging from 3.1 million to 15 million gas, as detailed in Appendix A. Post–London

fork and EIP-1559 implementation, the target is a fixed 15 million gas, with an upper limit of

30 million and a dynamic reserve price adjustment for pending transactions to align closely

with the target. The bottom panel reveals that, just as for Bitcoin, Ethereum’s early-phase

utilization rate rose steadily. However, following the introduction of EIP-1559 via the London
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Figure 1: Time series of Bitcoin and Ethereum capacity utilization rates
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hard fork, the blockchain has operated at full capacity. My analysis attributes this to EIP-

1559’s design, arguing that transaction fees now effectively shape and regulate the supply

curve for monopolistic validators.

Such economic interactions between fee mechanisms and capacity have been overlooked in

earlier studies. For instance, Lehar and Parlour (2020) focus on strategic capacity utilization

in Bitcoin, while Huberman et al. (2021) theoretically ascribe full capacity utilization to the

free entry of validators even though Bitcoin does not continuously operate at full capacity

despite such entry. In my analysis in Appendix B.1, I examine factors affecting block space

demand, including the number of active addresses, token prices, transaction fees, and resid-

ual demand through mempool size for Bitcoin. The data reveal strong correlations between

traditional demand-side factors such as active addresses and transaction fees and the uti-

lization rate for Bitcoin and Ethereum pre-EIP-1559. Post-EIP-1559, these factors became

decoupled from block utilization.

In my study on block space supply in Appendix B.2, I evaluate factors such as computing

power and mining pool concentration for both Bitcoin and Ethereum, adding the total

Ethereum staked and validator pool concentration for Ethereum post–proof of stake. The

results indicate that neither computing power nor Ethereum staked significantly impacted

block utilization rates for Bitcoin or Ethereum. However, higher concentration rates among

mining pools in Bitcoin, measured through the Herfindahl–Hirschman index (HHI), correlate

with sub-100% block utilization, suggesting that miners may exercise market power to leave

blocks less full. This pattern does not hold for Ethereum, where both before and after the

transition to proof of stake, mining pool concentration shows no discernible effect on block

utilization rates. The stabilization of Ethereum’s block utilization post–London fork further

corroborates this observation.
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Figure 2: Ethereum fee settings and estimator

2.2 Transaction Fees on Ethereum

Ethereum fees initially operated on a bidding system constrained by a fixed block size. The

fixed per-block gas limit and fluctuations in demand resulted in user delays, as the system

lacked a “slack” mechanism to adjust block size to meet varying demand. In addition, since

validators collected the fees, this system led to a first-price auction when demand was high.

As first-price auctions are not incentive-compatible when user valuations are unobserved,

this required complex fee estimation efforts from users.

With EIP-1559, Ethereum’s fee structure underwent significant changes to address the

issues with the first-price auction with a fixed block size limit. The system now operates

with a target block size set at qtarget = 15M gas, a legacy from the pre–London hard fork

settings, and a maximum block size of qmax = 2qtarget. Each transaction comes with a “base

fee” on the user end, algorithmically adjusted based on network demand. The minimum gas
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price, pt, is adjusted based on the formula

pt = pt−1 · (1 + d
qt−1 − qtarget

qtarget
) (1)

where d is an adjustment parameter set to 1
8
, allowing the minimum price to double in

8 blocks when blocks are full. In addition to the base fee, users can include a “tip” to

incentivize faster processing by validators. The dual-fee structure allows more predictability

in transaction costs, as the base fee aligns closely with network congestion. Figure 2 shows

fee settings and an estimator of the base fee for Ethereum users.

From a validator’s standpoint, selection is stochastic, contingent on either the proof-

of-work or proof-of-stake mechanism. Though the selected validator enjoys a monopolistic

position during her turn to validate a block, the protocol’s fee structure regulates her behav-

ior. Each transaction j carries a computational cost qj, measured in gas units. Ethereum

transaction senders pay an amount computed as qj ·min{pt + δj, c}, where δj is the tip and

c the fee cap, with c ≥ pt. Incentive compatibility requires that, under normal demand

conditions, the base fee adjusts upward to match the willingness to pay of the marginal

user, and the tip is small in proportion. The aggregate base fee revenue over N transaction,∑N
j=1 qjpt, is “burned”, primarily to address the validator’s off-chain incentives, as argued

by Roughgarden (2021). Meanwhile, tips and a block reward go directly to the validator.

By diverting a portion of the revenue away from the validator, the protocol has instruments

to ensure that supply is not artificially restricted and that transactions of higher value are

included.

EIP-1559 raises several questions regarding its rationale, potential for improvement, and

the design of other fee policies that share its simplicity. Specifically, in the face of demand

fluctuations, why might a protocol designer opt for a blockchain with an imposed quantity

limit as in Bitcoin and Ethereum pre–London hard fork and dynamically adjust when demand

fluctuates vs. one where price controls such as the EIP-1559 base fee are imposed and
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dynamically adjust when demand fluctuates? What determines the shape and parameters

of such transaction fees? These questions will be the focus of subsequent sections in this

paper.

3 Model

3.1 Environment

A blockchain, such as Bitcoin or Ethereum, is modeled as a distributed computer network

where users submit transactions to be included in a chain of blocks by validators. The

blockchain records the network’s state, such as account balances. A transaction t represents

arbitrary data sent over the network to alter its state—for instance, to transfer a balance.

Users submit transactions to a publicly observed pool of outstanding transactions (mempool),

with a bid bt, signifying their willingness to pay for transaction processing. The monopolistic

validator, using quantities xi of a finite number of resources i ∈ [[1, N ]] (e.g., computation,

bandwidth) selects a subset of transactions from the mempool to form a block. A block of

size q is an ordered sequence of transactions and a reference to the previous block. Validators

add a block to the blockchain by a consensus mechanism (such as proof of work or proof of

stake), a process irrelevant to this analysis. Technological constraints impose a maximum

block size qmax, thus limiting the supply of block space.7

Validators: We model a setting with multiple validators; however, when a validator is

selected to produce a block, she acts as a monopolist. This fact reflects the temporary

monopoly power inherent in blockchain consensus mechanisms with a single block proposer.

The validator uses a bundle of computational resources x ∈ RN
+ at exogenous per-unit

7See the related discussion in Buterin (2018) for the case of the Ethereum blockchain.
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resource rates gx ∈ RN
++ to produce a block of size q ≤ qmax, as given by

q =
N∑
i=1

gxi
xi (2)

Each transaction consumes specific amounts of various resources (e.g., computation, storage,

bandwidth). The total block size is the weighted sum of these resource usages across all

included transactions.

The validator incurs a cost C(q) = c(x1, . . . , xN), based on the resources used to produce

a block. These costs encompass validation operation costs and other costs associated with

accessing and modifying the blockchain’s state.8 The validator faces uncertainty in her

marginal costs due to factors such as fluctuations in energy prices, hardware performance

variability, and network conditions. Therefore, denote by C(q; η) the validator costs of

production and let η be a random variable with finite mean that represents the validator’s

marginal cost uncertainty.

Users: Users, denoted by j ∈ [0, 1], are atomistic. We model user arrivals between two

consecutive blocks, Bt, Bt+1 as a Poisson process X with rate ζ. To facilitate comparative

analysis under different block size limits, we introduce the notation ζ ≡ λqmax, where λ

reflects the arrival rate per unit of maximum block size. In our subsequent analysis, we

consider λ a random variable capturing demand uncertainty. For simplicity, we assume that

users leave the pool if their transaction is not included in the next block, only to return

according to the arrival process.9

Each user j has a valuation vj drawn from a common distribution f with a cumulative

distribution function F , which is continuous and increasing.
8From the blockchain designer’s viewpoint, costs might also include block propagation delays due to large

blocks and other societal costs.
9Leonardos et al. (2021) confirm that this assumption does not significantly impact the dynamics of

transaction fees, which are the focus of our analysis. In his research, Nisan (2023) accounts for residual
demand in the mempool and finds transaction fee dynamics similar to those in Leonardos et al. (2022).
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Establishing a Demand Curve: Given that the fee policies under consideration are

incentive-compatible in dominant strategies, as demonstrated by Roughgarden (2021), it is

reasonable to assume that users bid their accurate valuations, i.e., bt = vj. Consequently,

for a given minimum bid for transaction inclusion, denoted by p, the number of users willing

to pay the bid is λqmaxF̄ (p), where F̄ (p) = 1− F (p). The following lemma shows that this

model is the microfoundation of an intuitive demand curve for block space, thereby linking

demand parameters to model primitives.

Lemma 1. The aggregate demand for block space can be represented as p =
(
F̄
)−1
( q

Ψ

)
,

where the price elasticity of demand for the marginal user equals the tail ratio
pf(p)

1− F (p)
.

Specifically, when F is a Pareto distribution with scale pm and shape α, the aggregate

demand for block space is given by

p

pm
=
( q

Ψ

)− 1
ε (3)

Here, p ∈ R+ is the market price, Ψ ≡ λqmax is a demand shifter, and ε = α is the price

elasticity of demand for block space.

Proof. Refer to Appendix C.1 for the proof.

In Section 3.3, assume that users’ valuations for transaction inclusion follow a Pareto

distribution. This choice is motivated by empirical observations in blockchain networks,

where transaction fees often exhibit heavy-tailed distributions due to a small number of

users willing to pay significantly higher fees for urgent processing. For instance, data from

the Ethereum network shows that transaction fees follow a heavy-tailed distribution (Guo

et al., 2019, See ), justifying the Pareto assumption.

While the Pareto distribution is a simplification, it allows for analytical tractability.

The assumption of a Pareto distribution is not restrictive. For a general user valuation

distribution, one can calculate the price elasticity of demand at all points from the tail ratio

of the distribution.
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The demand curve from the Pareto distribution will be helpful when I consider uncer-

tainty in the user arrival rate λ, leading to uncertainty in the demand shifter Ψ. By modeling

λ as a random variable, we incorporate demand uncertainty into our analysis and can study

the effect of stochastic demand on the optimal fee policies. For realization λ > 1, we en-

counter a high-demand scenario where not all transactions can be included in the next block,

whereas λ < 1 reflects a low-demand scenario where the block is not filled. Given this con-

text and considering the uncertainties in both the cost C(q; η) and demand Ψ, we study

the conditions under which a blockchain protocol designer would find introducing price or

quantity controls beneficial.

3.2 Tension Between Protocol Objectives and The Validator’s In-

centives

Given that each validator has monopoly power during their assigned turn, we model the

interaction between a single validator and the protocol designer. This allows us to analyze

the strategic choices and conflicts in setting fee policies.

3.2.1 Protocol Designer’s Preference for Maximum Capacity Utilization

The designer selects the control variable (price or quantity) before uncertainties are real-

ized, aiming to maximize expected social welfare while considering the strategic responses

of validators and users.

If the protocol designer has a preference over the block size, then she will prefer quantity

controls over price controls as the former insulates this variable from demand fluctuations. To

illuminate the potential conflict between the protocol designer’s objectives and the miners’

incentives, consider the following examples of objective S(q) for the protocol designer.

Example 2. (Social Welfare) Let u be an increasing function representing the utility of a
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representative user on the blockchain. The social welfare function S(q) can be defined as

S(q) =


u(q) if q ≤ qmax

−∞ if q > qmax

(4)

This example reflects a protocol designer’s concern for maximizing user utility, an objective

that can diverge from the profit-maximizing motive of the validator.

Claim 3. Suppose the protocol designer aims to choose either a base fee (price control) or a

block size limit (quantity control) to maximize social welfare as defined in Equation (4). If 0

is in the support of Ψ, then the protocol designer would prefer to have blocks at full capacity.

The only price that aligns with the designer’s objective is zero.

Proof. If the protocol designer can choose the block size, then she can guarantee a maximal

utility at qlimit. With a price choice, however, we have q = max{Ψ
(

pm
p

)ε
, qlimit}. This

means that for any price p, there is a deadweight loss when demand intensity is low, Ψ ≤(
p
pm

)ε
qlimit, which makes the expectation lower when 0 is in the support of Ψ. Therefore,

the only transaction fee that ensures the designer achieves the maximum block utilization

under all demand scenarios is a zero price. All users are willing to submit transactions at

this price, and the block is filled regardless of demand fluctuations.

Setting a very low price eliminates deadweight loss from less than full blocks in low-

demand conditions. This claim highlights a point of conflict with the validator, who may

have different objectives, such as profit maximization.

Example 4. (Technological Block Size Targets) The protocol designer may have a target

block size qtarget to optimize network performance, security, or decentralization. For example,

setting a target block size can help manage the trade-off between transaction throughput and

the time it takes for blocks to propagate through the network. She might also allow some degree

of deviation from the target block size, which we can represent as S(q) = ℓ{q−qtarget}, where
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ℓ stands for some loss function. For instance, a square loss function could be used to penalize

deviations from the target:

S(q) = −
(
q − qtarget

)2 (5)

Claim 5. Under a technological block size target, the protocol designer prefers quantity con-

trols over price controls. In particular, for the square loss function, the expected block size

under optimal price controls E[q] is less than the target qtarget, and the loss is given by

E[
(
q(Ψ)− qtarget

)2
] =

Var(Ψ)

E[Ψ2]
(qtarget)2 (6)

Proof. Refer to Appendix C.2.

This loss quantifies the variance in the block size, relative to the target, that arises

because of the fluctuations in demand Ψ when the price is optimally chosen ex-ante. This

highlights that the loss for the protocol designer is more significant when the demand shifter

has a high variance.

3.2.2 The Validator’s Monopoly Power

While validators compete ex-ante to be selected for block production, the selected validator

effectively becomes a monopolist for that block. This model captures the essential features

of the validator market, where competition determines which validator gets to produce a

block, but monopoly power in, so a monopolist validator’s profit Π consists of the block

reward R, the transaction fee revenue pq, and the cost C(q; η) associated with producing a
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block of size q.10

Π = E [R + pq − C(q; η)] . (7)

Application developers and users design transactions to be as efficient as possible to minimize

costs, i.e., the cost to the validator is11

C(q; gx, η) = min
x∈RN

+

c(x1, . . . , xN ; η) (8)

subject to (2). The bundle x can be interpreted as the various resources that constitute a

user transaction, such as bandwidth and computational operations. Let us consider that c

is homogeneous of degree 1 in x.12 We then have

C(q; gx, η) = Γ(η, gx)q (10)

The expression for the marginal cost Γ is derived in Appendix C.3.

A monopolist validator would then maximize profits in equation (7). In contrast to

the protocol designer, who systematically prefers to set quantities ex-ante, the monopolist

validator might choose either the price-setting or the quantity-setting regime, depending on
10For simplicity, I abstract from the fact that not all fees collected go to the validator, and the monopolist

validator can capture extra revenue from MEV. In Ethereum’s EIP-1559 mechanism, the base fee is burned
rather than paid to validators. Hence, validators only receive the priority tip component of users’ payments.
This burning mechanism is critical: without it, validators could insert empty transactions to inflate future
block fees at no net cost, undermining the price-adjustment process. In addition to transaction fees, val-
idators can capture MEV by reordering or selectively including transactions to exploit on-chain arbitrage
opportunities (e.g., DEX front-running). On Ethereum, a sophisticated ecosystem of searchers and builders
helps validators systematically capture such profits.

11In blockchain networks, transaction fees are often proportional to the computational and storage re-
sources required. Therefore, developers and users are incentivized to optimize their transactions to reduce
costs.

12A typical example is the Cobb–Douglas cost function

c(x1, . . . , xN ; η) = η

N∏
i=1

xεi
i such that

N∑
i=1

εi = 1 (9)
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the degree of demand uncertainty.

3.3 Bargaining Problem

I model the resolution of the potential conflict between the protocol designer and the validator

by assuming that the price- or quantity-setting regime is determined by Nash bargaining over

the protocol profits.13 Before uncertainty is realized, the protocol designer and the validator

commit ex-ante to a fixed base fee (price-setting) or fixed block space (quantity-setting). In

practice, such a process is implemented by a set of rules in the fee policies of the blockchain

to which validators and blockchain designers agree. Even though the validator has ultimate

control over which transactions, of what s,ize and at what pr, ice can be included in a block,

sophisticated mechanisms can be encoded to enforce prices and quantities. Protocol revenue

can be diverted in part to the protocol treasury, burned, or rebated to users to implement the

fee policies; this design feature is beyond the scope of this paper.14 The planner’s objective

balances social welfare and technological considerations while ensuring that the validator has

enough excess profits to be willing to provide her services.

The following objective captures the planner’s problem:

V = E [S(q)]1−β E [pq − C(q; η)]β (11)

In this objective, the parameter β ∈ [0; 1] captures the bargaining power of the validator.

β = 1 means that the outcome maximizes the excess profits of the validator,15 while β = 0

means that the outcome optimizes for the protocol designer’s objective captured by the
13Even without a formal bargaining game, one could analyze the fee mechanism preferences of the interim

monopolist validator. The main takeaways on price vs. quantity-setting can stand alone as a simpler exercise.
14See Roughgarden (2021).
15For analytical simplicity, we focus on transaction fees as the primary variable component of the validator’s

profit. While the block reward is important, it is often a fixed amount per block and does not directly influence
the choice between price and quantity controls in our model. Another interpretation of our analysis is to
look at the long run, where blockchain rewards are often programmed to decay exponentially to zero in order
to avoid overinflation. An analysis involving the full profit of the validator E [R+ pϕq − C(q; η)] where ϕ is
a stochastic share of priority fee as in Jermann (2023) would yield similar insights.

23



function S(q). The Nash bargaining problem is defined over expected utilities, taking into

account uncertainty in deman λ, an marginal costs η. We assume that both parties have

common knowledge of the distributions of these random variables.

Price Controls: Assuming that the block space demand follows the isoelastic demand

curve derived in (3), with a price elasticity of demand ε > 1 and that the block size limit is

not binding, the equilibrium block size lies on the demand curve, i.e., q = Ψ
(

p
pm

)−ε

. The

problem of setting optimal prices then becomes

Vp = max
p∈R+

E

[
S

(
Ψ

(
p

pm

)−ε
)]1−β

E

[
(p− Γ)×Ψ

(
p

pm

)−ε
]β

(12)

Quantity Controls: If the block size is set at q, the transaction is included in the block at

the price that clears markets ex-post: p = pm
(
q
Ψ

)− 1
ε . Then, the value of setting the optimal

block space is

Vq = max
q∈R+

E [S (q)]1−β E
[(

pm

( q

Ψ

)− 1
ε − Γ

)
× q

]β
(13)

The log-difference between the values of price controls and block space controls can be

defined as follows:

∆log = logVp − logVq (14)

To derive some insight into the choice between price and quantity controls, consider a

blockchain designer’s objective that accounts for social welfare with utility S(q) = u(q) = qν

for ν > 0. The following proposition establishes the relationship between the relative value

of price controls, the price elasticity of demand, and other moments of the shock to demand

and marginal costs given an arbitrary bargaining power β for the validator.

Proposition 6. Assume that (Ψ, η) follows a joint log-normal distribution with log-variances

24



σ2
Ψ, σ

2
η and log-covariance σΨ,Γ . Then, for any β > 0, the relative value of price controls

over quantity controls is given by:

∆log =
1

2

((
ν̂ − ν̄

ε

)
σ2
Ψ − 2(εν − β)σΨ,Γ

)
(15)

where ν̄ = (1− β)ν + β and ν̂ = (1− β)ν2 + β.

Proof. Refer to Appendix C.3.

We can interpret this equation first by looking at the limit for β → 1, ν → 1, which gives

∆log =
1

2
(ε− 1)

(
1

ε
σ2
Ψ − 2σΨ,Γ

)

In this case, price-setting is preferable to quantity-setting when (i) demand volatility is high

and (ii) the covariance between demand and real marginal costs is low. Uncertainty in

demand favors price controls, as block size adjustments can flexibly respond to demand fluc-

tuations. Additionally, a positive correlation between marginal costs and demand disfavors

price controls, as this would lead to the production of larger blocks when marginal costs are

high. The price elasticity of demand, which dictates how quickly prices react to changes,

mediates the degree to which the firm values (i) and (ii). A larger price elasticity of demand

favors price controls. In general, these comparative statistics indicate that price-setting has

an advantage as long as demand is relatively elastic, i.e., ε > ν̄/ν̂, and the validator has

enough bargaining power, β > εν.

Taking Stock: The above result helps us understand the differences in the policies that

determine fees and block space in Bitcoin and Ethereum. We can see that both blockchains

are instances where price elasticity of demand is high ε > 1 and demand uncertainty is

significant σ2
Ψ ≫ 0.

The background provided in Section 2.1 suggests that Ethereum can be viewed through

the lens of this model as an instance where the bargaining power of the validator is high β → 1
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(or is considered high by the protocol designers). Thus, our use of ‘high bargaining power’

for validators should be interpreted in the sense of their economic incentive alignment in the

transaction-fee market, rather than an overriding governance control of the protocol overall.

In addition, since the proof-of-stake upgrade, the marginal cost for Ethereum validators has

been virtually constant, so σΨ,Γ ≈ 0. Proposition 6 states that, in this case, price-setting is

the most favorable policy. This explains the adoption of the EIP-1559 price-setting policy

for the Ethereum blockchain. Furthermore, Figure 1 shows that EIP-1559 has performed

better since Ethereum’s proof-of-stake upgrade, consistent with the correlation between the

validator’s marginal costs and demand being lower relative to miners’ in a proof-of-work

protocol.

Bitcoin is distinguished as the first blockchain with an anonymous founder, and its core

developers strongly emphasize decentralization and censorship resistance. As discussed in

Section 2.1, most proposals to change Bitcoin’s fees and block size policies have failed.

Bitcoin can, therefore, be viewed through the lens of our model as an instance where the

bargaining power of validators (here miners) is low β → 0 (or is not attributed enough

importance by protocol designers, given the low block space utilization rate still observed).

In addition, it is safe to assume that under the proof-of-work protocol, miners’ marginal cost

is largely positively correlated with demand σΨ,Γ ≫ 0. Proposition 6 states that, in this

case, price-setting is less effective.

In general, the key determinants of the advantage of price-setting in blockchains are the

validator’s bargaining power, the elasticity of demand, the validator’s uncertainty about de-

mand, and marginal costs. This insight will guide us in Section 4 in studying the implications

of my results for Ethereum transaction fees.

3.4 Effect of Cryptocurrency Price Fluctuations

Cryptocurrency prices can be volatile, while users value transaction processing services in

dollars or real terms. This section examines the impact of cryptocurrency price volatility on
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the choice between price and quantity controls. Let P denote the exchange rate between 1

USD and the cryptocurrency (equivalently, the inverse of the cryptocurrency price expressed

in dollars). Another way to interpret P is the exchange rate between 1 unit of consumption

goods and the cryptocurrency. This real model accommodates variations in cryptocurrency

price and fiat currency’s value. Users pay transaction fees in the cryptocurrency at a nominal

price p, implying that the dollar (equiv. real) value of these payments is
p

P
. Meanwhile, Γ

represents the dollar (equiv. real) marginal cost.

The following proposition, formulated for simplicity with β = 1 (though similar insights

apply for other parameters), provides an equivalent to Proposition 6 in this context:

Proposition 7. Suppose (Ψ, η, P ) is jointly log-normal distributed. Then, the relative value

of price adjustments over quantity adjustments is

∆log =
1

2
(ε− 1)

(
1

ε
σ2
Ψ − 2σΨ,Γ − εσ2

P − 2εσP,Γ

)
(16)

In addition to the findings of Proposition 6, the variance of the cryptocurrency price and

the covariance between the cryptocurrency price and the dollar (equiv. real) marginal cost

both decrease the relative advantage of price controls over quantity controls.

4 Implications for Ethereum Transaction Fees

In this section, I explore how my results can inform the design of Ethereum fee policies.

Proposition 6 implies that, under the conditions of (15), any fixed block size target qtarget

can be improved upon by setting prices ex-ante and letting quantities adjust. As discussed

in Section 2, Ethereum’s fee policies follow such an approach to guarantee blocks of average

size qtarget. How can prices be set iteratively and heuristically? Below, I define a family of

simple TFMs, including EIP-1559, Ethereum’s TFM. I study their dynamics, determine the

shape and adjustment rate of the optimal mechanism within this family, and provide bounds

on the target block size that align with the incentives of a monopolistic validator.
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Definition 8. (ADT-TFM) A TFM is called adaptive to a deterministic target (ADT) if

there exists a deterministic block size, qtarget (the target), and a deterministic function, f

(the adjustment function), such that the base fee satisfies

pt+1

pt
= g

(
qt − qtarget

qtarget

)
(17)

Example 9. (EIP-1559) The base fee in EIP-1559 is ADT with linear adjustment function

g(x) = 1 + d× x where the adjustment parameter is d = 1
8
.

Let q∗ denote the optimal quantity control or the block size that a blockchain designer

aims to achieve for a specific technological target, S(q) = δ{q − qtarget}. In this case,

q∗ = qtarget. We consider a general demand curve, with price elasticity of demand ε(qtarget)

that is assumed to be fixed and uncertainty in demand represented by λ. In this context,

a TFM is considered robustly optimal if, following a sudden change or shock in demand, it

manages to bring the realized quantity as close as possible to the targeted level in the worst-

case scenario. The following proposition determines the shape and slope of the optimal

ADT-TFM.

Proposition 10. Suppose that the demand curve is log-convex; the robustly optimal ADT-

TFM is an exponential function with an adjustment parameter equal to the inverse price

elasticity of demand, d = 1
ε(qtarget)

. In other words, g(x) = exp (d · x) and

pt+1 = pt exp

(
1

ε(qtarget)

qt − qtarget

qtarget

)
(18)

The intuition of the proof in Appendix C.4 goes as follows. Let f denote the adjustment

function of the optimal TFM and p(qt) the price that matches demand at block size qt. The
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base fees then satisfy

ln pt+1 − ln pt = ln g

qt − qtarget

qtarget
p(qtarget)

p(qt)− p(qtarget)︸ ︷︷ ︸
g(qt)

p(qt)− p(qtarget)

p(qtarget)

 (19)

Near qtarget, we have:

g(qt) −−−−→
qtarget

q′(p(qtarget))p(qtarget)

qtarget
= ε(qtarget) (20)

And if pt+1 maintains the block size near qtarget, then

ln pt+1 − ln pt ∼
p(qt)− p(qtarget)

p(qtarget)
(21)

Let x denote this price growth. From (19), we obtain x = ln (g (ε(qtarget) · x)) + o(x) for all

x in the neighborhood of zero.

Solving this functional equality yields g(x) = exp
(

x
ε(qtarget)

)
in the neighborhood of zero.

The proof extends this argument with uncertainty in demand and shows that this function

is optimal for the worst-case demand scenario in demand fluctuations.

In particular, when the elasticity of demand is constant, expression (20) becomes an

equality everywhere. The adjustment parameter is a constant and equals the inverse of

the price elasticity of demand. Moreover, the adjustment function takes the form of an

exponential function everywhere. Similarly, if we restrict the adjustment function to be

linear or of the form (1 + d)
qt−qtarget

qtarget as studied by Leonardos et al. (2022), the adjustment

rate remains the inverse of the price elasticity of demand. This elasticity, however, captures

the price elasticity of inclusion of a transaction in the next block. Given the user interface

shown in Figure 2, users are less likely to change their price in a short period, so this elasticity

will be larger than the price elasticity of inclusion of a transaction within 5–10 minutes, for

which users can substitute waiting in the mempool.
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Adjustment Parameter for Ethereum: I now approximate Ethereum’s adjustment rate

through the lens of my analysis. I use Ethereum data because of its widespread availability,

the simplicity of its ADT-TFM, and the global usage of its blockchain.

A random sample of 100,000 blocks, encompassing 16,881,386 transactions, was extracted

from the complete set of Ethereum blocks. This sample spans from the introduction of EIP-

1559 at the London hard fork (block number 12965000, August 5, 2021) to block number

17731768 (July 20, 2023). Additional random block subsamples from before and after the

Ethereum merge (block number 15537393, September 15, 2022) are also analyzed.16

The median block in the sample contains 143 transactions. Each block is associated with

a number and a timestamp, the total gas used by all transactions in the block (equivalent

to q in the model), and an array of transactions. Each transaction includes information on

its gas unit, gas price, and other metadata. I do not have random variation in supply to

trace the demand curve here. Instead, informed by Lemma 1, I calculate the Pareto tail of

transaction gas prices—as the nearest proxy for user valuations—for blocks of size around

qtarget to obtain the price ε(qtarget). This approach has limitations that I discuss in Appendix

D.

My favorite number is a Pareto coefficient of 12.62 for blocks of size within ±5% of

the block size target (over 7252 blocks and 12965717 transactions), which yields an optimal

adjustment rate of 7.92%. This is significantly below Ethereum’s current adjustment rate

of 12.5%. This result aligns with the finding of Leonardos et al. (2022), who simulate

the dynamic system of EIP-1559 and find stability around the target block size only for

adjustment parameters below 8%. Several alternative choices in Appendix D yield a range

between 6.14% and 11% for the Ethereum optimal adjustment rate. My contribution clarifies

that the adjustment rate encapsulates the economic concept of inverse price elasticity of

demand, which must be measured or approximated on-chain.
16The results are consistent when I separately sample 100,000 blocks from before and after the merge.
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Target Block Size and MEV: Now, let us determine the block size target that aligns

with the optimal target of a monopolistic validator. The goal of such a block size target is

to make the blockchain immune to a simple form of MEV—that is, to prevent the validator

from including her value-extracting transactions while reducing the effective supply available

to users. The following definition makes this notion explicit.

Definition 11. (Myopic-Miner Incentive Compatibility) A quantity target is myopic-miner

incentive-compatible (MMIC) if a myopic miner, by creating no fake transactions and ad-

hering to the suggested block size target qtarget, maximizes her profit.

The MMIC definition implies that a miner who aims to maximize her revenue should be

motivated to comply with the proposed quantity target when choosing her block size ex-ante.

Proposition 12. Given any isoelastic demand curve, the target block size aligning with the

monopolist validator’s optimal target block size is expressed as

qtarget

qmax
=

(
ε

ε− 1

)−ε

E
[
λ

1
ε

]ε
(22)

Proof. Refer to Appendix C.5.

This proposition states that the maximum block size should have an adequate buffer

above the block size; otherwise, if the block size target is too high relative to the maximum

block size, the monopolist validator will have incentives to fill the block up to the target size

with her value-extracting transactions. In particular, if qmax is adjusted to coincide with user

demand under average demand conditions, then qmax

qtarget
> e. For the price elasticity found

above, I find that the ratio of the maximum block size to the block size target should be

greater than 2.83 for Ethereum, which is currently set at 2.
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5 Conclusion

In this paper, I have studied different blockchain fee policies to allocate block space efficiently

when various sources of uncertainty exist. Namely, I have compared the quantity-setting

regime used by Bitcoin and the price-setting regime used by Ethereum under different sources

of uncertainty. Price controls are optimal in an environment with low validator bargaining

power, high price elasticity of demand, high demand uncertainty, and high marginal costs

during the validation process. In addition, a high variance of the cryptocurrency price

mitigates the advantages of price controls. These insights help explain the difference between

Bitcoin’s and Ethereum’s fee policies. Next, I have applied these insights to a family of fee

policies to which the method used by Ethereum belongs. Under mild assumptions on the

shape of the demand for block space, I find that a crucial parameter of the mechanism, the

rate of adjustment of prices, equals the inverse price elasticity of demand for inclusion in

the next block. Some calculations using Ethereum transaction data suggest that the rate at

which Ethereum’s fees change is faster than optimal.

Henceforth, understanding the economics of multidimensional fees is crucial, as trans-

actions use various types of resources. The question of designing fee policies for durable

resources is growing in importance as blockchain states expand significantly over time, par-

ticularly due to resources such as storage. Additionally, as some blockchain states may

experience less congestion than others, it is imperative to explore fee policies that differenti-

ate pricing based on varying demand levels rather than solely pricing block space.17 While a

comprehensive examination of these complex issues lies beyond the scope of this paper, they

offer promising opportunities for future research and further refinement of my analysis.
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Appendix

A History of Block Size Changes in Ethereum

Dates Changes in Gas

Limit

Reasons and Context

March 4th, 2016 3,141,592 to 4,712,388 Max gas increased by 1.5x, and minimum gas price

reduced from 50 to 20 gwei (a denomination of the

Ethereum cryptocurrency) to improve affordabil-

ity and throughput.

September 22nd,

2016

4,712,388 to 1,000,000 Network experienced a DDoS attack, leading to a

drastic reduction in block size for security mea-

sures.

September 22nd,

2016

1,000,000 to 1,500,000 DDoS attack was partially mitigated, allowing a

limited increase in block size.

October 15th,

2016

1,500,000 to 500,000 Block size was decreased as a precautionary step

before implementation of a hard fork to address

security vulnerabilities.

October 19th,

2016

500,000 to 3,000,000 Hard fork successfully implemented, security issues

resolved, leading to a substantial increase in block

size.

October 20th,

2016

3,000,000 to 1,500,000 Another DDoS attack occurred, prompting a re-

duction in block size to safeguard the network.
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October 23rd,

2016

1,500,000 to 2,000,000 Successful mitigation of attacks led to increased

block size, signaling a return to stability.

November 24th,

2016

2,000,000 to 3,300,000 Continued stability and growing user base justified

another increase in block size.

December 5th,

2016

3,300,000 to 4,000,000 Network achieved consistent stability, allowing a

further increase in block size.

June 3rd, 2017 4,000,000 to 4,712,388 Increase in network activity and user engagement

necessitated a rise in block size.

June 29th, 2017 4,712,388 to 6,283,184 New target gas limit set at 4,700,000 to better

match growing ecosystem demands.

December 10th,

2017

6,283,184 to 8,000,000 Rise in transaction volume driven by Cryptokitties

NFT required an increase in block size.

September 19th,

2019

8,000,000 to

10,000,000

Tether’s migration to the Ethereum blockchain led

to increased transaction demands, prompting a

block size increase.

June 19th, 2020 10,000,000 to

12,000,000

Miner consensus to increase block size was reached,

supporting the growing Ethereum ecosystem.

July 25th, 2020 12,000,000 to

12,500,000

Minor increase following another round of miner

agreements aimed at fine-tuning network perfor-

mance.

April 21st, 2021 12,500,000 to

15,000,000

Berlin hard fork led to efficiency improvements,

enabling a substantial increase in block size.

August 5th,

2021

15,000,000 to

30,000,000

London hard fork brought about major improve-

ments in transaction fee predictability and network

efficiency, justifying a block size doubling.

Table A1: Table of history
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B Capacity Utilization

B.1 Demand Factors

For my analysis, I identified the number of active addresses, token prices, and transaction

fees as potential determinants of block space demand. For Bitcoin (BTC) only, I also added

the size of the mempool, i.e., the pool of transactions that has yet to be confirmed and

included in a block.

For BTC, the top graph of Figure A1 shows that the number of active addresses has a

strong correlation with the block utilization rate, as it acts as a good proxy for demand.

Similarly, transaction fees show a tight link with the utilization rate, capturing the fact

that users must offer a higher fee to be picked by miners in periods of block congestion.

As explained in Lehar and Parlour (2020), mempool size is not a perfect predictor of block

utilization, as miners can leave blocks empty, even when there are transactions waiting, to

extract more profits. Finally, the BTC price has a loose relationship with the utilization

rate, possibly because of its high volatility due to speculation.

For Ethereum (ETH), the bottom graph of Figure A1 shows that, before the London fork,

the number of active addresses once again had the highest correlation with block utilization

rates, representing best users’ demand for transactions. Both transaction fees and the ETH

price have stronger correlations with block fullness than their BTC counterparts. After the

implementation of EIP-1559, gas levels stabilized consistently at the target level, suggesting

that the implementation of the new fee system successfully achieved its objective. As a

consequence, the block utilization rate became uncorrelated with its previously valid demand-

side determinants.

B.2 Supply Factors

For my analysis, I identified the computing power of miners and the concentration rate of

mining pools as potential determinants of block space supply. For ETH only, I considered the
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total amount of ETH staked and the concentration of validator pools after the proof-of-stake

update.

For BTC, the top graph of Figure A1 shows that the amount of computing power invested

into mining does not affect the block utilization rate. I measure it using the hash rate, which

measures how many guesses are made per second to solve the code to mine the next block.

Regarding mining pool concentration, computed as the Herfindahl–Hirschman index (the

sum of the squares of individual market shares) from the shares of blocks mined in a one-

month period, the graph seems to support the hypothesis that miners exercise their market

power by leaving blocks less than full, as periods of higher HHI are usually accompanied by

utilization rates below 100%.

For ETH, the bottom graph of Figure A1 shows that, under both proof of work and

proof of stake, the computing power (or the amount of ETH staked, of which 32 ETH are

required to activate a validator software), does not affect the utilization rate, similarly to

what we observe for BTC. In contrast to the BTC case, however, the pool concentration

does not affect the block utilization rate either. The HHI measures (from the share of blocks

mined in a one-month period under proof of work and from the share of ETH staked over a

one-month period under proof of stake) are not correlated with the utilization rate, which is

particularly noticeable after the stabilization of the utilization rate post–London fork.

C Analytic Proofs

C.1 Proof of Lemma 1

At a price p, demand for block space is the measure of users’ willingness to pay p for

transaction inclusion, i.e., λqmaxF̄ (p). This yields the demand curve p =
(
F̄
)−1
(

q
λqmax

)
.

The price elasticity of demand is defined by (negative) the percentage change in quantity

demanded over the percentage change in price, i.e., − dq/q
dp/p

. Since from the demand curve

q = λqmaxF̄ (p) and dq/dp = −λqmaxf(p), the demand elasticity is pf(p)
1−F (p)

.
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When F is a Pareto distribution with scale pm and shape α,

F̄ (p) = Pr(v > p) =


(

pm
p

)α
for p ≥ pm

1 for p < pm

(23)

so that, above the minimum price pm, demand is

q = λqmax

(
pm
p

)α

Therefore, we obtain
p

pm
=

(
q

λqmax

)− 1
α

C.2 Proof of Claim 5

The optimal ex-ante quantity choice is just q = qtarget for which the loss is zero. The optimal

ex-ante price choice solves

min
p∈R+

E

(Ψ · ( p

pm

)−ε

− qtarget

)2
 (24)

Denote x ≡
(

p
pm

)−ε

. The first-order condition for the choice of p (resp. x) in (24) is

x =
E[Ψ]qtarget

E[Ψ2]
(25)

The expected block size is then

E[Ψx] =
E[Ψ]2qtarget

E[Ψ2]
≤ qtarget (26)
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Replacing (25) in the value of the loss function (24) yields

E[Ψ2]− E[Ψ]2

E[Ψ2]
(qtarget)2 =

Var(Ψ)

E[Ψ2]
(qtarget)2

C.3 Proof of Proposition 6

We first find the expression of the marginal cost Γ in (10). The first-order condition is

ci(x1, . . . , xN ; η) = γgxi
(27)

where γ is the Lagrangian of constraint (2). Since c is homogeneous of degree 1, we have

c(x1, . . . , xN ; η) =
N∑
i=1

ci(x1, . . . , xN ; η)xi = γ
N∑
i=1

gxi
xi = γq (28)

Therefore, Γ = γ. Evaluating at q = 1 yields

Γ(η, gx) = c(x1(1, gx, η), . . . , xN(1, gx, η); η) (29)

To prove the proposition, we now take logarithms of the blockchain designer’s objective and

maximize over p and q. The first-order conditions for the price choice and quantity choice

are

ε(1− β)ν

p∗
+

εβ

p∗
=

βE[Ψ]

p∗E[Ψ]− E[ΓΨ]
(30)

(1− β)ν

q∗
+

β

q∗
=

β/εpm(q
∗)−1−1/εE[Ψ1/ε]

pm(q∗)−1/εE[Ψ1/ε]− E[Γ]
(31)
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Denote ν̄ = (1− β)ν + β. Then, we obtain

p∗ =
εν̄

εν̄ − β

E[ΓΨ]

E[Ψ]
(32)

q∗ =

(
εν̄

εν̄ − β

1

pm

E[Γ]
E[Ψ1/ε]

)−ε

(33)

The log values of price controls and quantity controls are then

logVp = −εν̄ log(p∗/pm) + (1− β) log(E[Ψν ]) + β log(p∗E[Ψ]− E[ΨΓ]) (34)

logVq = ν̄ log(q∗) + β log(pm(q
∗)−1/εE[Ψ1/ε]− E[Γ]) (35)

Replacing the optimal choices with their values in (32) and (33), we obtain

logVp = −ν̄ log(p∗/pm) + (1− β) log(E[Ψν ]) + β log(
β

εν̄ − β
E[ΨΓ]) (36)

logVq = ν̄ log(q∗) + β log(
β

εν̄ − β
E[Γ]) (37)

Simplifying yields

logVp − logVq = ν̄ε logE[Ψ] (38)

+(ν̄ε− β)(logE[Γ]− logE[ΨΓ])

−εν̄ logE[Ψ1/ε] + (1− β) logE[Ψν ]

For the joint log-(Ψ,Γ), with mean

µ =

µΨ

µΓ


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and variance–covariance matrix

Σ =

 σ2
Ψ σΨ,Γ

σΨ,Γ σ2
Γ


we have

logE[Ψ] = µΨ +
1

2
σ2
Ψ (39)

logE[Γ]− logE[ΨΓ] = −µΨ −
1

2
σ2
Ψ − σΨ,Γ (40)

logE[Ψ1/ε] =
1

ε
µΨ + (

1

ε2
)
1

2
σ2
Ψ (41)

logE[Ψν ] = ν(µΨ +
1

2
νσ2

Ψ) (42)

Putting them together, we obtain the result

logVp − logVq =
1

2

((
ν̂ − ν̄

ε

)
σ2
Ψ − 2(εν − β)σΨ,Γ

)
(43)

where ν̂ = (1− β)ν2 + β.

C.4 Proof of Proposition 10

Let us start by defining the notion of optimality in this dynamic context. Let qt be the

equilibrium quantity at time t. Denote as xt =
qt−qtarget

qtarget
the percentage deviation from the

target at time t. Denote as λ the arrival rate in normal times (i.e., the expected arrival

rate). Consider a shock to the demand curve λ−1
t ≡ λ−1 + zt. At the protocol set price pt,

the quantity lies on the demand curve qt = λtq
maxF̄ (pt). The deviation from target xt can

be due to the shock to demand zt or to a protocol price pt that is not properly set so that qt

deviates from the target.

We have the expression pt = F̄−1( qt
qmaxλt

). From the expression of the ADT-TFMs, we
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have

pt+1 = F̄−1(
qtarget(1 + xt)

qmaxλt

)g(d× xt) (44)

Without loss of generality at time t+ 1, demand returns to normal so that λt+1 = λ.

Known Intensity of Demand: Suppose for now that the realization of zt, i.e., λt, is

known; then, the deviation from the target quantity at time t+ 1 is

xt+1 =
F̄
(
F̄−1( q

target(1+xt)
qmaxλt

)g(d× xt)
)

F̄ (ptarget)
− 1 (45)

We can see that by setting

g(d× xt) =
F̄−1( q

target

qmaxλ
)

F̄−1( q
target(1+xt)

qmaxλt
)

(46)

we guarantee that the quantity at time t + 1 is at the target. The issue is that demand λt

is uncertain, so we look at the function f that performs in the worst-case scenario.

Unknown Intensity of Demand: Because demand is uncertain, the adjustment function

can depend on the gap from target xt but not on λt. Thus, we need to evaluate the deviation

that is the closest to the worst-case value of zt. We have

ln F̄−1

(
qt+1

qtarget

)
= ln F̄−1(

qtarget(1 + xt)

qmaxλt

)− ln F̄−1(
qtarget

qmaxλ
) + ln g(d× x) (47)

Suppose that − ln F̄−1 is concave; then, for any xt and zt = λ−1
t − λ−1,

ln F̄−1(
qtarget

qmaxλ
)− ln F̄−1(

qtarget(1 + xt)

qmaxλt

) ≥ 1

ε(qtarget)
(xt + zt) (48)

From (47), we have that ln g(d×x) is the closest approximation of ln F̄−1( q
target

qmaxλ
)−ln F̄−1( q

target(1+xt)
qmaxλt

)
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that is independent of zt. Therefore, f(d× x) = x/ε(qtarget); i.e., d = ε(qtarget) and f = exp.

C.5 Proof of Proposition 12

From equation (33), the optimal quantity for a monopolistic miner is, for β = 1,

q∗ =

(
ε

ε− 1

1

pm

E[Γ]
E[Ψ1/ε]

)−ε

(49)

With Ψ = λqmax. Now, suppose that the minimum user valuation is greater than the

expected marginal cost pm > E[Γ]. Then, by including her own transactions up to the block

size limit qmax and paying the base fee to herself, the validator obtains a positive value in

expectation. Therefore, MMIC requires that pm ≤ E[Γ]; thus,

q∗ ≤ qmax

(
ε− 1

ε

)ε

E[λ1/ε]ε (50)

By Jensen’s inequality, E[λ1/ε]ε ≤ E[λ]. Thus, the block size limit is set to match user

demand in expectation; then, E[λ] = 1, and thus,

q∗

qmax
≤

(
ε− 1

ε

)ε

(51)

The right-hand side is an increasing function for ε > 1 with limit e−1.

These bounds provide valuable insights for studies of fee policies involving a monopolistic

validator (Nisan, 2023; Lavi et al., 2022) and fee policies designed to prevent the validator

from monopolizing all the surplus (?).

Figure A1 illustrates how the upper bound of the ratio q∗/qmax changes with ε. This

upper bound approaches an asymptote of e−1 ≈ 37%, and it reaches 95% of this limit

when ε = 10.42. Ethereum currently sets the target block size to half the block size limit.

The correct interpretation of this result is that any ADT-TFM with a target block size

exceeding 37% of the block size that meets user demand in an average demand scenario
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would not be invulnerable to a simple form of MEV. This is because MMIC necessitates

that the validator has no incentive to include her own value-extracting transactions while

simultaneously reducing the effective supply available to users.
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Figure A1: Optimal target block size for a monopolist validator as a function of ε

D Numerical Examples

Methodology: The inference of a demand curve requires random variation in supply to

distinguish between shifts along the demand curve and shifts in the demand curve itself.

Nevertheless, such random variation in supply is rare because of the programmatically defined

rules of blockchains.

Instead, a different strategy, informed by the user demand model presented in Section 3,

is adopted. Lemma 1 shows that, for any density f of user valuations, the price elasticity

of demand is the tail ratio
pf(p)

1− F (p)
. Specifically, if the distribution is Pareto, the price

elasticity is its Pareto tail coefficient. Knowing the Pareto tail of the distribution of user

valuations allows the determination of the optimal adjustment parameter from Proposition

10 as the inverse of the Pareto tail coefficient.

In this analysis, transaction gas prices serve as the nearest proxy for user valuations, given
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the available data. A Pareto distribution is fitted to the empirical distribution of effective

transaction gas prices in each randomly selected block to calculate the optimal adjustment

rate. However, this approach is not without limitations.18 First, gas prices censor user

valuations at the lower end of the distribution because of the base fee. Second, pending

transactions in the mempool, which carry lower base fees, are not included. Consequently,

the estimate will reflect a heavier tail than the actual user valuation distribution. Therefore,

the estimate of the Pareto tail coefficient is an underestimate, meaning its inverse—the

optimal adjustment rate—will be overestimated. The adjustment parameters identified here

should thus be considered an upper bound.19 To address these limitations, several robustness

exercises are performed, which include restricting the estimation to blocks with a minimum

gas price below a certain threshold (to limit the censoring of low valuations) and to blocks

that are less than full (to limit the censoring of mempool transactions). These robustness

exercises do not alter the primary conclusions of this numerical analysis.

Discussion: The estimate from a sample prior to the merge suggests an adjustment rate

of 6.57% (tail coefficient 15.22), while the optimal adjustment rate for the blocks following

the merge is 8.68% (tail coefficient 11.53). The observation that the current adjustment rate

of 12.5% overshoots more before the merge than after aligns with the findings of Leonardos

et al. (2022). The authors postulate that this discrepancy is because inter-block times were

(approximately) exponentially distributed prior to the proof-of-stake upgrade whereas they

are constant in Ethereum’s proof-of-stake protocol. A constant block arrival rate more

accurately reflects our model, suggesting that an estimate around 8% is more suitable for

the current blockchain. One might wonder whose price elasticity our estimate represents

and why it is so high (over 10). The adjustment rate represents the inverse elasticity of

the marginal user submitting her transaction for inclusion in the next block. Given the
18As users demand different amounts of block space, each transaction is weighted by the gas units that it

uses to fit the Pareto distribution.
19Given that the optimal adjustment rate found here is lower than its current value of 12.5%, this upper

bound estimate offers valuable insights for the design of Ethereum’s TFM.
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low block size limit, which is set because of technological constraints, it is not implausible

that a marginal decentralized finance (DeFi) user with sensitive transactions would exhibit

significant demand elasticity, similar to how high-frequency traders are sensitive to spreads.

Another consideration is that this analysis does not account for users whose transactions

remain in the mempool for several blocks before confirmation. Notably, under EIP-1599,

base fees do not decrease fast enough after a surge in demand. Fee policies that respond to

intra-day or intra-hourly demand variations would not need to adjust prices based on the size

of the previous block. Instead, it could maintain fixed prices during high-demand periods,

fill blocks, and monitor the mempool for price adjustments. However, mempool data are

typically not recorded on-chain (i.e., as part of the immutable blockchain) and can be easily

manipulated.

Alternative Calculations: This section presents the results of supplementary robustness

checks to validate the primary numerical analysis findings. These checks are performed

under various conditions to address potential concerns highlighted above, such as the base

fee causing censoring of low valuations and the exclusion of pending mempool transactions.

To investigate the consistency of the Pareto tail coefficient and the optimal adjustment rate,

I adjust the selection of blocks within a size range of qtarget(1± δ%) and different limits on

base fees.

The estimations are performed on three samples: the full sample, the pre-merge sample,

and the post-merge sample. Tables A2, A3, and A4 provide detailed results. The estimated

optimal adjustment rates are consistently lower than the 12.5% adjustment rate and remain

stable under various data partitionings. The estimate is smaller for the pre- than for the post-

merge sample, as previously found. The adjustment rates decrease as the window around

the target block size widens and the maximum base fee increases. Ethereum transaction

fees are paid in units of gwei. The increase in rates as the max base fee limit becomes more

restrictive (for blocks with a base fee of less than 30 gwei) can only produce thicker tails
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Parameters Outputs Observations

δ max base fee (gwei) shape α adjustment rate d number of blocks

5%

200 12.45 8.03 7189
100 11.83 8.45 6645
60 11.01 9.08 5867
30 9.50 10.53 4130

33%

200 12.77 7.83 43718
100 12.09 8.27 40471
60 11.26 8.88 35649
30 9.48 10.55 25193

87.5%

200 13.64 7.33 78881
100 12.62 7.92 70769
60 11.53 8.67 60141
30 9.50 10.53 41140

Table A2: Shape of Pareto fit α and optimal adjustment rate s for the different maximum
gas prices (base fee) in units of gwei and selection of blocks within size qtarget ± δ% (full
sample estimation)

because of a restricted range and censoring. Variations based on δ, the window of the target

block size, are quite robust, with an adjustment rate in the full sample estimation ranging

from 7.33% to 8.03% for a more accommodating max base fee of 200 gwei. Estimates from

the pre-merge and post-merge samples suggest that the optimal adjustment rate lies within

the 6% to 10% window, where the latter serves as an upper limit.

Blockchain designers must adopt simple, robust, and principled methods for updating

TFM parameters. However, updating parameters and the “rules of the game" as we go might

not be the best track for fostering scalability. Considering nondeterministic adjustment rates

for TFMs could provide a solution. Preliminary quantitative explorations using adjustment

rates derived from prices and quantities of the preceding two blocks have shown promising

results in terms of how well these rates reflect market conditions during the relevant periods.

A more stable and manipulation-resistant approach could involve calculating an average

elasticity over a range of prior blocks. Alternatively, introducing noise to the target block

size, effectively the “supply curve”, could help us infer demand fluctuations under normal
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Parameters Outputs Observations

δ max base fee (gwei) shape α adjustment rate d number of blocks

5%

200 11.46 8.73 5088
100 11.24 8.89 4962
60 10.84 9.23 4688
30 9.55 10.47 3547

33%

200 11.48 8.71 30029
100 11.29 8.86 29454
60 10.89 9.18 27884
30 9.55 10.47 21288

87.5%

200 11.32 8.83 42042
100 11.15 8.97 41348
60 10.78 9.28 39426
30 9.47 10.56 30890

Table A3: Shape of Pareto fit α and optimal adjustment rate s for the different maximum gas
prices (base fee) in units of gwei and selection of blocks within size qtarget ± δ% (post-merge
sample estimation)

Parameters Outputs Observations

δ max base fee (gwei) shape α adjustment rate d number of blocks

5%

200 14.85 6.73 2101
100 13.57 7.37 1683
60 11.70 8.55 1179
30 9.15 10.93 583

33%

200 15.59 6.41 13689
100 14.22 7.03 11017
60 12.57 7.96 7765
30 9.09 11.01 3905

87.5%

200 16.29 6.14 36839
100 14.69 6.81 29421
60 12.96 7.71 20715
30 9.58 10.44 10250

Table A4: Shape of Pareto fit α and optimal adjustment rate s for the different maximum
gas prices (base fee) in units of gwei and selection of blocks within size qtarget±δ% (pre-merge
sample estimation)
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