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Taxation with Idosyncratic shocks (Aiyagari, JPE 1995)

▶ infinitely lived household

▶ Each household receives an idiosyncratic shock θt that follows some non-degenerate
Markov process.

▶ Let θt = (θ1, . . . , θt) is a history of shocks that each household received up to period t

▶ Households solve
v(b0, θ0; {τ k

t , τ
l
t}) = max

c,k,b,l
E0

∑
βtu(ct , lt)

s.t.

c(θt)+kt+1(θ
t)+bt+1(θ

t) ≤ (1−τ l
t )wtθt lt(θ

t)+(1−τ k
t )(1+ rt −δ)(kt(θ

t−1)+bt(θ
t−1))

kt+1(θ
t) + bt+1(θ

t) ≥ Dt+1({τ k
t , τ

l
t})

▶ Here Dt+1({τ k
t , τ

l
t}) is the smallest present value of income that a household can make

from period t + 1 onwards.
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Firms and Government

▶ Firms
maxF (Kt , Lt)− rtKt − wtLt

▶ Government picks {τ k
t , τ

l
t ,Bt , gt} to maximize

E0

∑
βtu(ct , lt) + U(gt)

with budget constraint

gt + Bt = τ k
t (1 + rt − δ)(Kt + Bt) + τ l

twtLt

▶ Feasibility ∫
bt(θ

t)dF (θt) + Bt = 0∫
θt lt(θ

t)dF (θt) = Lt∫
kt(θ

t)dF (θt) = Kt∫
ct(θ

t)dF (θt) + gt + Kt+1 = F (Kt , Lt) + (1− δ)Kt
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▶ Redefine variables w̄t ≡ (1− τ l
t )wt , r̄t ≡ (1− τ k

t )(1 + rt − δ), at ≡ kt + bt

▶ Then the Ramsey planner can maximize over
{wt , rt , w̄t , r̄t ,Kt ,Bt , Lt , at(θ

t), ct(θ
t), lt(θ

t)} instead of
{wt , rt , τ

l
t , τ

k
t ,Kt ,Bt , Lt , bt(θ

t), kt(θ
t), ct(θ

t), lt(θ
t)}

▶ Households problem

v(a0, θ0; {τ k
t , τ

l
t}) = max

c,a,l
E0

∑
βtu(ct , lt)

s.t.
c(θt) + at+1(θ

t) ≤ w̄tθt lt(θ
t) + r̄tat(θ

t−1)

at+1(θ
t) ≥ Dt+1({r̄t , w̄t})

▶ We define optimal choices recursively as

ct = ct(at , θt ; {r̄t , w̄t}∞t=0)

lt = lt(at , θt ; {r̄t , w̄t}∞t=0)

at+1 = at+1(at , θt ; {r̄t , w̄t}∞t=0)
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Household Problem

▶ This allows us to define functions

Lt({r̄t , w̄t}∞t=0),Ct({r̄t , w̄t}∞t=0),Bt = At({r̄t , w̄t}∞t=0) + Kt

▶ Important: if we have {at(θt)}θt ,Kt , then any {kt(θt), bt(θt)}θt distribution that
satisfies kt(θ

t) + bt(θ
t) = at(θ

t) and
∫
kt(θ

t) = Kt is an equilibrium which gives the
same welfare

▶ Therefore we can independently pick {at({r̄t , w̄t}∞t=0)} and Kt , and can back out
{bt({r̄t , w̄t}∞t=0)}, {kt({r̄t , w̄t}∞t=0)} and government debt {Bt({r̄t , w̄t}∞t=0)} as residuals.
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Step back

▶ So far, not much progress

▶ we have no idea how functions {Lt({r̄t , w̄t}∞t=0)}, {Ct({r̄t , w̄t}∞t=0)}, {At({r̄t , w̄t}∞t=0)}
depend on {r̄t , w̄t}∞t=0

▶ We could proceed as before and take all the FOCs but it is very hard to get any insight

▶ we have infinitely many histories θt and corresponding constraints

▶ distribution of asset holdings {at} and as a result policy rules ct(at , θt ; {r̄t , w̄t}∞t=0), etc
are very hard to characterize

▶ This is a very general problem with incomplete market models

▶ distribution of asset holdings and labor supply depend on current and future prices in a
complicated way

▶ prices are endogenous, function of the distribution of asset holdings and labor supply

▶ even without taxation, equilibrium is a complicated fixed point problem which is hard to
solve even numerically (see Krusell and Smith (JPE, 1998))

▶ here, in addition we impose an outer layer of choosing optimal taxes
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Partial characterization

▶ Lett’s consider a partial characterization. Suppose the planner took
lt({r̄t , w̄t}∞t=0), ct({r̄t , w̄t}∞t=0) as given

▶ Ramsey problem is

max
r̄,w̄,K ,g

E0

∑
βtu(ct({r̄t , w̄t}∞t=0), lt({r̄t , w̄t}∞t=0)) + U(gt)

s.t
Ct({r̄t , w̄t}∞t=0) + gt + Kt+1 = F (Kt , Lt({r̄t , w̄t}∞t=0)) + (1− δ)Kt

▶ Let’s characterize capital taxation in the steady state
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First order conditions

▶ [gt ] : β
tU ′(gt) = λt

▶ [Kt+1] : λt = (1 + Fk(t + 1)− δ)

▶ In steady state: prices and aggregate quantities are constant, individual quantities are
not.

▶ In steady state aggregate capital stock is ”undistorted”

(1 + Fk(ss)− δ) =
1

β
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Implication for taxes

▶ Remember consumer’s problem

v(a0, θ0; {τ k
t , τ

l
t}) = max

c,a,l
E0

∑
βtu(ct , lt)

s.t.
c(θt) + at+1(θ

t) ≤ w̄tθt lt(θ
t) + r̄tat(θ

t−1)

at+1(θ
t) ≥ Dt+1({r̄t , w̄t})

▶ FOCs w.r.t at+1 imply Euler equation

uc(t) ≥ r̄βEtuc(t + 1)
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Martingale Convergence Theorem

▶ Martingale convergence theorem: one of the most important mathematical results for
characterization of long-run distributions

▶ Stochastic process Mt is a

▶ martingale if Mt = Mt+1 for all t

▶ submartingale if Mt ≤ EtMt+1 for all t

▶ supermartingale if Mt ≥ EtMt+1 for all t

Theorem
Suppose Mt is a martingale (or submartingale, or supermartingale) such that
suptE0|Mt | < ∞ (the expectations are bounded). Then Mt converges almost surely to a
finite limit.
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Application of MCT

▶ Suppose r̄ ≥ 1/β. Then
uc(t) ≥ Etuc(t + 1)

▶ Therefore, uc(T ) is a supermartingale.

▶ uc(t) is a bounded supermartingale since uc(t) ≥ 0 implies

uc(0) ≥ Etuc(t + 1) ≥ 0

▶ Therefore, if r̄ ≥ 1/β then uc(t) converges to a finite limit.



12/ 22

Linear Taxation: Aiyagari (1995) Nonlinear Taxation: The inverse Euler Equation

Implications I

▶ Suppose that uc(t) → u∗
c > 0. Then ct → c∗ < ∞. This c∗ should satisfy a budget

constraint. For ε > 0, ∃T ,∀t ≥ T

c∗ + at+1(θ
t) ≤ w̄tθt lt(θ

t) + r̄tat(θ
t−1)

▶ DIfferent realizations of θt will lead to different lt and different w̄tθt lt(θ
t)

▶ Consider a long sequence of high and low realizations ofw̄tθt lt(θ
t) so at should diverge

to ±∞ which would violate the natural debt limit or transversality constraint. (or TVC)
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Implications II

▶ Alternatively, suppose that uc(t) → 0 so that ct diverges to ∞

▶ Then it must be true that at diverges to infinity

▶ Since

Kt + Bt =

∫
at

it must be true that Kt + Bt diverges to infinity

▶ but Kt is bounded because there is a maximum sustainable capital stock in the economy

▶ Bt is bounded by present value of tax revenues on capital and labor

▶ Which leads to a contradiction.
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Implications III

▶ This arguments show that uc(t) cannot be a martingale, and therefore

r̄ < 1/β

▶ This implies at a steady state

1 + Fk(Kss, Lss)− δ = 1/β

> r̄ = (1− τ k
ss)(1 + rss − δ)

= (1− τ k
ss)(1 + fK (Kss , Lss)− δ)

▶ Therefore the optimal tax on capital is positive

τ k
ss > 0
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Discussion

▶ In the presence of uninsurable idiosyncratic shocks, consumer has a precautionary
motive to save, in addition to the regular consumption smoothing forces

▶ for any finite amount of assets there is always a positive probability of hitting borrowing
limit eventually

▶ if r̄ ≥ 1/β consumer faces no (first order) losses by slightly increasing his savings and
moving away from borrowing limit

▶ finite distribution of assets is possible only with r̄ < 1/β

▶ Ramsey planner wants to be able to transfer resource between the periods with the
shadow cost being equal to rate of discounting, which lead to 1 + Fk − δ = 1/β
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The original result

▶ W. Rogerson (1985), “Repeated Moral Hazard,” Econometrica 53 (1985), 69–76.

▶ Moral hazard model.

▶ Two periods t = 0, 1

▶ effort in first period e0

▶ stochastic output in second period y1 = θ1 with density f (θ1|e0)

▶ consumption in both periods c0 and c1(θ1)

▶ linear savings technology with rate of return R

▶ Separable utility

u(c0)− h(e0) + β

∫
u(c1(θ1))f (θ1|e0)

▶ Incentive compatibility of {c0, e0, c1(θ1)} requires

u(c0)− h(e0) + β

∫
u(c1(θ1))f (θ1|e0) ≥ u(c0)− h(e′0) + β

∫
u(c1(θ1))f (θ1|e′0)
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Planning Problem

▶ Planning Problem

minC(u0) +
1

R

∫
[C(u1(θ1))− θ1]f (θ1|e0)

s.t. incentive compatibility and promise-keeping

u0 − h(e0) + β

∫
u(c1(θ1))f (θ1|e0) ≥ u0 − h(e′0) + β

∫
u(c1(θ1))f (θ1|e′0)

u0 − h(e0) + β

∫
u(c1(θ1))f (θ1|e0) ≥ U

▶ If agents could save at R then we would have the Euler equation

u′(c0) = βR

∫
u′(c1(θ1))f (θ1|e0)

▶ We will show that this equation does not hold at the solution of the planning problem:
there are savings distortions.
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Proof

▶ Fix e0 and consider variations in consumption/utility:

û0 = u0 − β∆

û1(θ1) = u1(θ1) + ∆

▶ Preserves utility and incentive compatibility since for all e′0 we have

û0 − h(e0) + β

∫
u(c1(θ1))f (θ1|e0) = u0 − h(e0) + β

∫
u(c1(θ1))f (θ1|e0)

▶ The optimal allocation must be immune to such variations

0 = arg min
∆

C(u0 − β∆) +
1

R

∫
[C(u1(θ1) + ∆)− θ1]f (θ1|e0)

▶ Note a similarity with a savings problem, where ∆ looks like an asset, −C(−x) looks
like a utility function, β−1 is the interest rate and R is the discount factor.
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Proof

▶ The associated (FOC evaluated at ∆ = 0 is

C ′(u0) =
1

βR

∫
C ′(u1(θ1))f (θ1|e0

i.e
1

u′(c0)
=

1

βR

∫
1

u′(c1(θ1))
f (θ1|e0)

This is the Inverse Euler equation.

▶ As long as the variance of c1(θ1) is strictly positive, then concavity of marginal utility
and Jensen’s inequality implies that the Euler equation is violated

u′(c0) < βR

∫
u′(c1(θ1))f (θ1|e0)

▶ Agents are “savings-constrained”. We have

u′(c0) = βR(1− τ s)

∫
u′(c1(θ1))f (θ1|e0)

with a positive savings wedge (implicit tax on savings/capital) τ s > 0
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Application to Dynamic Mirrlees Model

▶ M. Golosov, N. Kocherlakota, and A. Tsyvinski, ”Optimal Indirect and Capital
Taxation,” Review of Economic Studies 70 (2003), 569-587.

▶ Two periods t = 0, 1

▶ work in second period y1(θ1)

▶ consumption in both periods c0 and c1(θ1)

▶ linear savings technology with rate of return R

▶ Separable utility

u(c0) + β

∫
[u(c1(θ1))− h(y1(θ1), θ1)]f (θ1|e0)

▶ Similar planning problem...same optimality condition, Inverse Euler equation

1

u′(c0)
=

1

βR

∫
1

u′(c1(θ1))
f (θ1|e0)

Same implications for the savings wedge.
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Discussion

▶ The uncertainty in types over time and the inability to control labor supply force the
planner to impose a distortion on savings to improve the provision of incentives to work.

▶ Another way to see this is that the desired labor supply at the optimal allocation is
incompatible with free savings.

▶ Increasing savings in period t increases disposable income in period t + 1.

▶ Unless utility is quasilinear, this implies an income effect on labor supply, and the agent
is then tempted to work less.

▶ More savings in period t and lower labor supply in period t + 1 are complements.

▶ Ruling out such a deviation requires discouraging savings below the level that would
occur at the free-market rate.

▶ Quantitatively savings wedge small, and most of the insurance done with labor wedge...
that will be our next class.
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