

Lecture 5: Dynamic Taxation I: Capital Taxation

Abdoulaye Ndiaye

NYU

Taxation with Idiosyncratic shocks (Aiyagari, JPE 1995)

- ▶ infinitely lived household
- ▶ Each household receives an idiosyncratic shock θ_t that follows some non-degenerate Markov process.
- ▶ Let $\theta^t = (\theta_1, \dots, \theta_t)$ is a history of shocks that each household received up to period t
- ▶ Households solve

$$v(b_0, \theta_0; \{\tau_t^k, \tau_t^l\}) = \max_{c, k, b, l} \mathbb{E}_0 \sum \beta^t u(c_t, l_t)$$

s.t.

$$c(\theta^t) + k_{t+1}(\theta^t) + b_{t+1}(\theta^t) \leq (1 - \tau_t^l) w_t \theta_t l_t(\theta^t) + (1 - \tau_t^k) (1 + r_t - \delta) (k_t(\theta^{t-1}) + b_t(\theta^{t-1}))$$

$$k_{t+1}(\theta^t) + b_{t+1}(\theta^t) \geq D_{t+1}(\{\tau_t^k, \tau_t^l\})$$

- ▶ Here $D_{t+1}(\{\tau_t^k, \tau_t^l\})$ is the smallest present value of income that a household can make from period $t+1$ onwards.

Firms and Government

► Firms

$$\max F(K_t, L_t) - r_t K_t - w_t L_t$$

► Government picks $\{\tau_t^k, \tau_t^l, B_t, g_t\}$ to maximize

$$\mathbb{E}_0 \sum \beta^t u(c_t, l_t) + U(g_t)$$

with budget constraint

$$g_t + B_t = \tau_t^k (1 + r_t - \delta)(K_t + B_t) + \tau_t^l w_t L_t$$

► Feasibility

$$\int b_t(\theta^t) dF(\theta^t) + B_t = 0$$

$$\int \theta_t l_t(\theta^t) dF(\theta^t) = L_t$$

$$\int k_t(\theta^t) dF(\theta^t) = K_t$$

$$\int c_t(\theta^t) dF(\theta^t) + g_t + K_{t+1} = F(K_t, L_t) + (1 - \delta) K_t$$

- ▶ Redefine variables $\bar{w}_t \equiv (1 - \tau_t^l)w_t$, $\bar{r}_t \equiv (1 - \tau_t^k)(1 + r_t - \delta)$, $a_t \equiv k_t + b_t$
- ▶ Then the Ramsey planner can maximize over
 $\{w_t, r_t, \bar{w}_t, \bar{r}_t, K_t, B_t, L_t, a_t(\theta^t), c_t(\theta^t), l_t(\theta^t)\}$ instead of
 $\{w_t, r_t, \tau_t^l, \tau_t^k, K_t, B_t, L_t, b_t(\theta^t), k_t(\theta^t), c_t(\theta^t), l_t(\theta^t)\}$
- ▶ Households problem

$$v(a_0, \theta_0; \{\tau_t^k, \tau_t^l\}) = \max_{c, a, l} \mathbb{E}_0 \sum \beta^t u(c_t, l_t)$$

s.t.

$$\begin{aligned} c(\theta^t) + a_{t+1}(\theta^t) &\leq \bar{w}_t \theta_t l_t(\theta^t) + \bar{r}_t a_t(\theta^{t-1}) \\ a_{t+1}(\theta^t) &\geq D_{t+1}(\{\bar{r}_t, \bar{w}_t\}) \end{aligned}$$

- ▶ We define optimal choices recursively as

$$c_t = c_t(a_t, \theta_t; \{\bar{r}_t, \bar{w}_t\}_{t=0}^{\infty})$$

$$l_t = l_t(a_t, \theta_t; \{\bar{r}_t, \bar{w}_t\}_{t=0}^{\infty})$$

$$a_{t+1} = a_{t+1}(a_t, \theta_t; \{\bar{r}_t, \bar{w}_t\}_{t=0}^{\infty})$$

Household Problem

- ▶ This allows us to define functions

$$L_t(\{\bar{r}_t, \bar{w}_t\}_{t=0}^{\infty}), C_t(\{\bar{r}_t, \bar{w}_t\}_{t=0}^{\infty}), B_t = A_t(\{\bar{r}_t, \bar{w}_t\}_{t=0}^{\infty}) + K_t$$

- ▶ Important: if we have $\{a_t(\theta^t)\}_{\theta^t}, K_t$, then any $\{k_t(\theta^t), b_t(\theta^t)\}_{\theta^t}$ distribution that satisfies $k_t(\theta^t) + b_t(\theta^t) = a_t(\theta^t)$ and $\int k_t(\theta^t) = K_t$ is an equilibrium which gives the same welfare
- ▶ Therefore we can independently pick $\{a_t(\{\bar{r}_t, \bar{w}_t\}_{t=0}^{\infty})\}$ and K_t , and can back out $\{b_t(\{\bar{r}_t, \bar{w}_t\}_{t=0}^{\infty})\}$, $\{k_t(\{\bar{r}_t, \bar{w}_t\}_{t=0}^{\infty})\}$ and government debt $\{B_t(\{\bar{r}_t, \bar{w}_t\}_{t=0}^{\infty})\}$ as residuals.

Step back

- ▶ So far, not much progress
 - ▶ we have no idea how functions $\{L_t(\{\bar{r}_t, \bar{w}_t\}_{t=0}^\infty)\}, \{C_t(\{\bar{r}_t, \bar{w}_t\}_{t=0}^\infty)\}, \{A_t(\{\bar{r}_t, \bar{w}_t\}_{t=0}^\infty)\}$ depend on $\{\bar{r}_t, \bar{w}_t\}_{t=0}^\infty$
- ▶ We could proceed as before and take all the FOCs but it is very hard to get any insight
 - ▶ we have infinitely many histories θ^t and corresponding constraints
 - ▶ distribution of asset holdings $\{a_t\}$ and as a result policy rules $c_t(a_t, \theta_t; \{\bar{r}_t, \bar{w}_t\}_{t=0}^\infty)$, etc are very hard to characterize
- ▶ This is a very general problem with incomplete market models
 - ▶ distribution of asset holdings and labor supply depend on current and future prices in a complicated way
 - ▶ prices are endogenous, function of the distribution of asset holdings and labor supply
 - ▶ even without taxation, equilibrium is a complicated fixed point problem which is hard to solve even numerically (see Krusell and Smith (JPE, 1998))
 - ▶ here, in addition we impose an outer layer of choosing optimal taxes

Partial characterization

- ▶ Let's consider a partial characterization. Suppose the planner took $l_t(\{\bar{r}_t, \bar{w}_t\}_{t=0}^{\infty})$, $c_t(\{\bar{r}_t, \bar{w}_t\}_{t=0}^{\infty})$ as given
- ▶ Ramsey problem is

$$\max_{\bar{r}, \bar{w}, K, g} \mathbb{E}_0 \sum \beta^t u(c_t(\{\bar{r}_t, \bar{w}_t\}_{t=0}^{\infty}), l_t(\{\bar{r}_t, \bar{w}_t\}_{t=0}^{\infty})) + U(g_t)$$

s.t

$$C_t(\{\bar{r}_t, \bar{w}_t\}_{t=0}^{\infty}) + g_t + K_{t+1} = F(K_t, L_t(\{\bar{r}_t, \bar{w}_t\}_{t=0}^{\infty})) + (1 - \delta)K_t$$

- ▶ Let's characterize capital taxation in the steady state

First order conditions

- ▶ $[g_t] : \beta^t U'(g_t) = \lambda_t$
- ▶ $[K_{t+1}] : \lambda_t = (1 + F_k(t+1) - \delta)$
- ▶ In steady state: prices and aggregate quantities are constant, individual quantities are not.
- ▶ In steady state aggregate capital stock is "undistorted"

$$(1 + F_k(ss) - \delta) = \frac{1}{\beta}$$

Implication for taxes

- ▶ Remember consumer's problem

$$v(a_0, \theta_0; \{\tau_t^k, \tau_t^l\}) = \max_{c, a, l} \mathbb{E}_0 \sum \beta^t u(c_t, l_t)$$

s.t.

$$\begin{aligned} c(\theta^t) + a_{t+1}(\theta^t) &\leq \bar{w}_t \theta_t l_t(\theta^t) + \bar{r}_t a_t(\theta^{t-1}) \\ a_{t+1}(\theta^t) &\geq D_{t+1}(\{\bar{r}_t, \bar{w}_t\}) \end{aligned}$$

- ▶ FOCs w.r.t a_{t+1} imply Euler equation

$$u_c(t) \geq \bar{r} \beta \mathbb{E}_t u_c(t+1)$$

Martingale Convergence Theorem

- ▶ Martingale convergence theorem: one of the most important mathematical results for characterization of long-run distributions
- ▶ Stochastic process M_t is a
 - ▶ martingale if $M_t = M_{t+1}$ for all t
 - ▶ submartingale if $M_t \leq \mathbb{E}_t M_{t+1}$ for all t
 - ▶ supermartingale if $M_t \geq \mathbb{E}_t M_{t+1}$ for all t

Theorem

Suppose M_t is a martingale (or submartingale, or supermartingale) such that $\sup_t \mathbb{E}_0 |M_t| < \infty$ (the expectations are bounded). Then M_t converges almost surely to a finite limit.

Application of MCT

- ▶ Suppose $\bar{r} \geq 1/\beta$. Then

$$u_c(t) \geq \mathbb{E}_t u_c(t+1)$$

- ▶ Therefore, $u_c(T)$ is a supermartingale.
- ▶ $u_c(t)$ is a bounded supermartingale since $u_c(t) \geq 0$ implies

$$u_c(0) \geq \mathbb{E}_t u_c(t+1) \geq 0$$

- ▶ Therefore, if $\bar{r} \geq 1/\beta$ then $u_c(t)$ converges to a finite limit.

Implications I

- ▶ Suppose that $u_c(t) \rightarrow u_c^* > 0$. Then $c_t \rightarrow c^* < \infty$. This c^* should satisfy a budget constraint. For $\varepsilon > 0, \exists T, \forall t \geq T$

$$c^* + a_{t+1}(\theta^t) \leq \bar{w}_t \theta_t l_t(\theta^t) + \bar{r}_t a_t(\theta^{t-1})$$

- ▶ Different realizations of θ_t will lead to different l_t and different $\bar{w}_t \theta_t l_t(\theta^t)$
- ▶ Consider a long sequence of high and low realizations of $\bar{w}_t \theta_t l_t(\theta^t)$ so a_t should diverge to $\pm\infty$ which would violate the natural debt limit or transversality constraint. (or TVC)

Implications II

- ▶ Alternatively, suppose that $u_c(t) \rightarrow 0$ so that c_t diverges to ∞
- ▶ Then it must be true that a_t diverges to infinity
- ▶ Since

$$K_t + B_t = \int a_t$$

it must be true that $K_t + B_t$ diverges to infinity

- ▶ but K_t is bounded because there is a maximum sustainable capital stock in the economy
- ▶ B_t is bounded by present value of tax revenues on capital and labor
- ▶ Which leads to a contradiction.

Implications III

- ▶ These arguments show that $u_c(t)$ cannot be a martingale, and therefore

$$\bar{r} < 1/\beta$$

- ▶ This implies at a steady state

$$\begin{aligned} 1 + F_k(K_ss, L_ss) - \delta &= 1/\beta \\ &> \bar{r} = (1 - \tau_{ss}^k)(1 + r_{ss} - \delta) \\ &= (1 - \tau_{ss}^k)(1 + f_K(K_{ss}, L_{ss}) - \delta) \end{aligned}$$

- ▶ Therefore the optimal tax on capital is positive

$$\tau_{ss}^k > 0$$

Discussion

- ▶ In the presence of uninsurable idiosyncratic shocks, consumer has a precautionary motive to save, in addition to the regular consumption smoothing forces
 - ▶ for any finite amount of assets there is always a positive probability of hitting borrowing limit eventually
 - ▶ if $\bar{r} \geq 1/\beta$ consumer faces no (first order) losses by slightly increasing his savings and moving away from borrowing limit
 - ▶ finite distribution of assets is possible only with $\bar{r} < 1/\beta$
- ▶ Ramsey planner wants to be able to transfer resource between the periods with the shadow cost being equal to rate of discounting, which lead to $1 + F_k - \delta = 1/\beta$

The original result

- ▶ W. Rogerson (1985), "Repeated Moral Hazard," *Econometrica* 53 (1985), 69–76.
- ▶ Moral hazard model.
- ▶ Two periods $t = 0, 1$
 - ▶ effort in first period e_0
 - ▶ stochastic output in second period $y_1 = \theta_1$ with density $f(\theta_1|e_0)$
 - ▶ consumption in both periods c_0 and $c_1(\theta_1)$
 - ▶ linear savings technology with rate of return R
- ▶ Separable utility

$$u(c_0) - h(e_0) + \beta \int u(c_1(\theta_1)) f(\theta_1|e_0)$$

- ▶ Incentive compatibility of $\{c_0, e_0, c_1(\theta_1)\}$ requires

$$u(c_0) - h(e_0) + \beta \int u(c_1(\theta_1)) f(\theta_1|e_0) \geq u(c_0) - h(e'_0) + \beta \int u(c_1(\theta_1)) f(\theta_1|e'_0)$$

Planning Problem

► Planning Problem

$$\min C(u_0) + \frac{1}{R} \int [C(u_1(\theta_1)) - \theta_1] f(\theta_1 | e_0)$$

s.t. incentive compatibility and promise-keeping

$$u_0 - h(e_0) + \beta \int u(c_1(\theta_1)) f(\theta_1 | e_0) \geq u_0 - h(e'_0) + \beta \int u(c_1(\theta_1)) f(\theta_1 | e'_0)$$

$$u_0 - h(e_0) + \beta \int u(c_1(\theta_1)) f(\theta_1 | e_0) \geq \underline{U}$$

► If agents could save at R then we would have the Euler equation

$$u'(c_0) = \beta R \int u'(c_1(\theta_1)) f(\theta_1 | e_0)$$

► We will show that this equation does not hold at the solution of the planning problem: there are savings distortions.

Proof

- ▶ Fix e_0 and consider variations in consumption/utility:

$$\hat{u}_0 = u_0 - \beta\Delta$$

$$\hat{u}_1(\theta_1) = u_1(\theta_1) + \Delta$$

- ▶ Preserves utility and incentive compatibility since for all e'_0 we have

$$\hat{u}_0 - h(e_0) + \beta \int u(c_1(\theta_1))f(\theta_1|e_0) = u_0 - h(e_0) + \beta \int u(c_1(\theta_1))f(\theta_1|e_0)$$

- ▶ The optimal allocation must be immune to such variations

$$0 = \arg \min_{\Delta} C(u_0 - \beta\Delta) + \frac{1}{R} \int [C(u_1(\theta_1) + \Delta) - \theta_1]f(\theta_1|e_0)$$

- ▶ Note a similarity with a savings problem, where Δ looks like an asset, $-C(-x)$ looks like a utility function, β^{-1} is the interest rate and R is the discount factor.

Proof

- The associated (FOC evaluated at $\Delta = 0$ is

$$C'(u_0) = \frac{1}{\beta R} \int C'(u_1(\theta_1)) f(\theta_1 | e_0)$$

i.e

$$\frac{1}{u'(c_0)} = \frac{1}{\beta R} \int \frac{1}{u'(c_1(\theta_1))} f(\theta_1 | e_0)$$

This is the Inverse Euler equation.

- As long as the variance of $c_1(\theta_1)$ is strictly positive, then concavity of marginal utility and Jensen's inequality implies that the Euler equation is violated

$$u'(c_0) < \beta R \int u'(c_1(\theta_1)) f(\theta_1 | e_0)$$

- Agents are "savings-constrained". We have

$$u'(c_0) = \beta R(1 - \tau^s) \int u'(c_1(\theta_1)) f(\theta_1 | e_0)$$

with a positive savings wedge (implicit tax on savings/capital) $\tau^s > 0$

Application to Dynamic Mirrlees Model

- ▶ M. Golosov, N. Kocherlakota, and A. Tsyvinski, "Optimal Indirect and Capital Taxation," *Review of Economic Studies* 70 (2003), 569-587.
- ▶ Two periods $t = 0, 1$
 - ▶ work in second period $y_1(\theta_1)$
 - ▶ consumption in both periods c_0 and $c_1(\theta_1)$
 - ▶ linear savings technology with rate of return R
 - ▶ Separable utility

$$u(c_0) + \beta \int [u(c_1(\theta_1)) - h(y_1(\theta_1), \theta_1)] f(\theta_1 | e_0)$$

- ▶ Similar planning problem...same optimality condition, Inverse Euler equation

$$\frac{1}{u'(c_0)} = \frac{1}{\beta R} \int \frac{1}{u'(c_1(\theta_1))} f(\theta_1 | e_0)$$

Same implications for the savings wedge.

Discussion

- ▶ The uncertainty in types over time and the inability to control labor supply force the planner to impose a distortion on savings to improve the provision of incentives to work.
- ▶ Another way to see this is that the desired labor supply at the optimal allocation is incompatible with free savings.
- ▶ Increasing savings in period t increases disposable income in period $t + 1$.
- ▶ Unless utility is quasilinear, this implies an income effect on labor supply, and the agent is then tempted to work less.
- ▶ More savings in period t and lower labor supply in period $t + 1$ are complements.
- ▶ Ruling out such a deviation requires discouraging savings below the level that would occur at the free-market rate.
- ▶ Quantitatively savings wedge small, and most of the insurance done with labor wedge... that will be our next class.

Bibliography

Aiyagari, S. R. (1995). "Optimal Capital Income Taxation with Incomplete Markets, Borrowing Constraints, and Constant Discounting." *Journal of Political Economy*, 103(6), 1158–1175.

Coven, J., Golder, S., Gupta, A., and Ndiaye, A. (2024). "Property Taxes and Housing Allocation Under Financial Constraints." CESifo Working Paper No. 11203

Golosov, M., Kocherlakota, N., and Tsyvinski, A. (2003). "Optimal Indirect and Capital Taxation." *Review of Economic Studies*, 70(3), 569–587.

Krusell, P., and Smith, A. A., Jr. (1998). "Income and Wealth Heterogeneity in the Macroeconomy." *Journal of Political Economy*, 106(5), 867–896.

Rogerson, W. P. (1985). "Repeated Moral Hazard." *Econometrica*, 53(1), 69–76.