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A Dynamic Life-Cycle Model

▶ Agents live for T years, work and consume

▶ Agents who work lt hours make income yt = θt lt .

▶ θt wage or productivity. Markov process with transition function f t(θt |θt−1)

▶ Planner observes ct , yt but not θt or lt

▶ per-period utility

u(ct , yt ; θt) = u(ct)− h(
yt
θt
)

▶ lifetime utility from allocations

U({c(θt), y(θt)}) =
T∑
t=1

∫
βt−1[u(c(θt))− h(

y(θt)

θt
)]P(θt)dθt

P(θt) = f t(θt |θt−1) . . . f
2(θ2|θ1)f 1(θ1) and dθt = dθt ḋθ1
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Incentive Compatibility in a dynamic setting

▶ For a reporting strategy r = {rt(θt)}Tt=1, continuation value after history θt

w r (θt) = u(c(r t(θt)))− h(
y(r t(θt))

θt
) + β

∫
w r (θt+1)f t+1(θt+1|θt)dθt+1

▶ Continuation value under truthful revelation

w(θt) = u(c(θt))− h(
y(θt)

θt
) + β

∫
w(θt+1)f t+1(θt+1|θt)dθt+1

▶ IC means truth-telling yields higher continuation utility than any other reporting strategy

(IC) : w(θ1) ≥ w r (θ1) ∀θ1, ∀r

▶ Consider reporting strategy r̃ t(θt) = (θt−1, θ′)

w r̃ (θt) = u(c(θt−1, θ′))− h(
y(θt−1, θ′)

θt
) + β

∫
w r̃ (θt−1, θ′, θt+1)f

t+1(θt+1|θt)dθt+1

▶ IC implies
w(θt) = max

θ′
w r̃ (θt)
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First Order Approach

▶ Envelope condition of the agent, which is necessary for incentive compatibility

∂w(θt)

∂θt
= −y(θt)

(θt)2
h′(

y(θt)

θt
) + β

∫
w(θt+1)

∂f t+1(θt+1|θt)
∂θt

dθt+1

▶ The planner’s objective is to minimize the expected discounted cost of providing an
allocation

min
c,y

T∑
t=1

(1/R)t−1

∫
(c(θt)− y(θt))P(θt)dθt

▶ subject to expected lifetime utility of each (initial) type θ1 being above a threshold

U({c, y}; θ1) ≥ U(θ1)

▶ And incentive compatibility replaced by the necessary envelope condition: First-Order
Approach

▶ Numerically verify global IC ex-post
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Recursive Formulation of the Relaxed Program

▶ Denote expected continuation utility

v(θt) ≡
∫

w(θt+1)f t+1(θt+1|θt)dθt+1

▶ Continuation utility w(θt) can be rewritten as

w(θt) = u(c(θt))− h(
y(θt)

θt
) + βv(θt)

▶ With persistence, planner needs also to control variation in continuation value with type

∆(θt) ≡
∫

w(θt+1)
∂f t+1(θt+1|θt)

∂θt
dθt+1

▶ The envelope condition can then be rewritten as

∂w(θt)

∂θt
=

y(θt)

(θt)2
h′(

y(θt)

θt
) + β∆(θt)

▶ State variable (vt−1,∆t−1, θt−1, t)
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Recursive Planning Problem

K(v ,∆, θ−, t) = min
c(θ),y(θ),w(θ),v(θ),∆(θ)

∫
(c(θ)− y(θ) +

1

R
K(v(θ),∆(θ), θ, t + 1))f t(θ|θ−)dθ

subject to

w(θ) = u(c(θ))− h(
y(θ)

θt
) + βv(θ)

ẇ(θ) =
y(θ)

(θ)2
h′(

y(θ)

θ
) + β∆(θ)

v =

∫
w(θ)f t(θ|θ−)dθ

∆ =

∫
w(θ)

∂f t(θ|θ−)
∂θ−

dθ
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Solution Method: Hamiltonian

▶ Denote λ and γ the multipliers on the third and fourth constraints

Kv (v ,∆, θ−, t) = λ, K∆(v ,∆, θ−, t) = γ

▶ In line with these identities, we write

Kv (v(θ),∆(θ), θ, t + 1) = λ(θ), K∆(v(θ),∆(θ), θ, t + 1) = γ(θ)

▶ Denote µ(θ) the co-state variable associated with w(θ). The Hamiltonian is

[C t(y(θ),w(θ)− βv(θ), θ)− y(θ)]f t(θ|θ−)

+
1

R

∫
K(v(θ),∆(θ), θ′, t + 1)f t+1(θ′|θ)dθ′f t(θ|θ−)

+λ[v − w(θ)f t(θ|θ−)] + γ[∆− w(θ)
∂f t(θ|θ−)

∂θ−
]

+µ(θ)[uθ(C
t(y(θ),w(θ)− βv(θ), θ), y(θ), θ) + β∆(θ)]

with the boundary conditions

lim
θ→θ̄

µ(θ) = 0 and lim
θ→θ

µ(θ) = 0
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Wedges

▶ Solution to the relaxed program characterized with wedges, implicit taxes and subsidies

▶ Intratemporal wedge

τL(θ
t) ≡ 1 +

h′(lt)

θtu′(ct)

▶ Intertemporal or savings wedge

τK (θ
t) ≡ 1− 1

Rβ

u′(ct)

Etu′(ct+1)
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First order conditions

▶ The law of motion for the co-state µ(θ) is (with g t(θ|θ−) = ∂f t (θ|θ−)

∂θ−
)

dµ(θ)

dθ
= −[

1

u′(c(θ))
− λ− γ

g t(θ|θ−)
f t(θ|θ−)

]f t(θ|θ−)

▶ And the FOCs for ∆(θ), v(θ) and y(θ) are

µ(θ)

θf t(θ|θ−)
= − 1

Rβ

γ(θ)

θ

1

u′(c(θ))
=

1

βR
λ(θ)

1−
hy (

y(θ)
θ

)

u′(c(θ))
=

µ(θ)

f t(θ|θ−)
[−hyθ(

y(θ)

θ
)]
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Inverse Euler Equation

▶ Integrating LoM of co-state and replacing λ from the FOC for v(θ) yields another proof
of the IEE.

0 =

∫
[

1

u′(c(θ))
− βR

u′(c−)
]f t(θ|θ−)dθ

▶ The intertemporal wedge satisfies

τk(θ
t−1) = 1−

[
∫
[u′(c(θt))]−1f t(θt |θt−1)dθt ]

−1∫
u′(c(θt))f t(θt |θt−1)dθt

▶ By Jensen’s inequality τK > 0

▶ Positive savings distortions are present at the constrained optimum.
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Labor Wedge

▶ Assume h isoelastic h(l) = l1+1/ε

1+1/ε

▶ Assume log autoregressive productivity process with persistence ρ

log(θt) = ρ log(θt−1) + ϵt

▶ Then the labor wedge satisfies

Et−1[
τL,t

1− τL,t

1

Rβ

u′(ct−1)

u′(ct)
] = ρ

τL,t−1

1− τL,t−1
+ (1 +

1

ε
)Cov(log(θt),

1

Rβ

u′(ct−1)

u′(ct)
)
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Intuition

▶ Labor wedge formula

Et−1[
τL,t

1− τL,t

1

Rβ

u′(ct−1)

u′(ct)
] = ρ

τL,t−1

1− τL,t−1
+ (1 +

1

ε
)Cov(log(θt),

1

Rβ

u′(ct−1)

u′(ct)
)

▶ LHS: risk-adjusted conditional expectation of
τL,t

1−τL,t

▶ RHS(1):
τL,t

1−τL,t
inherits persistence of {θ}

▶ RHS(2): positive drift of
τL,t

1−τL,t

▶ benefit of added insurance Cov(log(θt),
1
Rβ

u′(ct−1)

u′(ct )
)

▶ incentive cost increases with elasticity ε

▶ With random walk productivity labor wedge increase with age
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Numerical Simulation

▶ Agents live for T = 60 years work for 40 years and retire for 20 years

▶ Utility function

log(ct)−
l1+1/ε

1 + 1/ε

with ε = 0.5, 1/R = β = 0.95

▶ Productivity process: random walk

θt = εtθt−1
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Age-dependence of Wedges

▶ as retirement nears uncertainty goes to 0

▶ labor tax increasing over time =⇒ increased insurance
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Optimal Allocations

▶ Consumption smoothing. Output declining over time

▶ Variance of consumption less than variance of productivity: insurance
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Tax Smoothing

▶ Tax smoothing: slope close to one

▶ dispersion: innovations in ct

▶ Drift: above 45 degree line

▶ Near retirement: lower dispersion, smaller drift
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Insurance
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History-Dependence and Insurance

▶ Regressive tax on average: short-term regressivity

▶ History dependence: dispersion

▶ Insurance: slope of 0.67
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Welfare Analysis

▶ linear taxes = cross-sectional average wedges from simulation

▶ bulk of welfare gains achieved by linear age-dependent policies
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